ﻻ يوجد ملخص باللغة العربية
We present multiwavelength imaging observations of PKS 1045-188, 8C 1849+670, and PKS 2216-038, three radio-loud active galactic nuclei from the MOJAVE-Chandra Sample that straddle the Fanaroff-Riley (FR) boundary between low- and high-power jets. These hybrid sources provide an excellent opportunity to study jet emission mechanisms and the influence of the external environment. We used archival VLA observations, and new Hubble and Chandra observations to identify and study the spectral properties of five knots in PKS 1045-188, two knots in 8C 1849+670, and three knots in PKS 2216-038. For the seven X-ray visible knots, we constructed and fit the broadband spectra using synchrotron and inverse Compton/cosmic microwave background (IC/CMB) emission models. In all cases, we found that the lack of detected optical emission ruled out the X-ray emission from the same electron population that produces radio emission. All three sources have high total extended radio power, similar to that of FR II sources. We find this is in good agreement with previously studied hybrid sources, where high-power hybrid sources emit X-rays via IC/CMB and the low-power hybrid sources emit X-rays via synchrotron emission. This supports the idea that it is total radio power rather than FR morphology that determines the X-ray emission mechanism. We found no significant asymmetries in the diffuse X-ray emission surrounding the host galaxies. Sources PKS 1045-188 and 8C 1849+670 show significant differences in their radio and X-ray termination points, which may result from the deceleration of highly relativistic bulk motion.
The INTEGRAL mission has played a major role in blazar science, thanks to its sensitive coverage of a spectral region (3-100 keV) that is critical for this type of sources, to its flexibility of scheduling and to the large field of view of its camera
We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various
The AGILE gamma-ray satellite accumulated data over two years on several blazars. Moreover, for all of the sources detected by AGILE, we exploited multiwavelength observations involving both space and ground based telescopes and consortia, obtaining
Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total o
Blazars are known for their energetic multiwavelength flares from radio wavelengths to high-energy $gamma$-rays. In this work, we study radio, optical, and $gamma$-ray light curves of 145 bright blazars spanning up to 8~yr, to probe the flaring activ