ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - M. Krelina , J. Nemchik 2021
We investigate the momentum transfer dependence of differential cross sections $dsigma/dt$ in diffractive electroproduction of heavy quarkonia on proton targets. Model predictions for $dsigma/dt$ within the light-front QCD dipole formalism are based on a realistic model for a proper correlation between the impact parameter $vec b$ of a collision and color dipole orientation $vec r$. We demonstrate a significance of $vec b-vec r$ correlation by comparing with a standard simplification $vec{b}parallelvec{r}$, frequently used in the literature.
The differential cross section $dsigma/dq^2$ of diffractive electroproduction of heavy quarkonia on protons is a sensitive study tool for the interaction dynamics within the dipole representation. Knowledge of the transverse momentum transfer $vec q$ provides a unique opportunity to identify the reaction plane, due to a strong correlation between the directions of $vec q$ and impact parameter $vec b$. On top of that, the elastic dipole-proton amplitude is subject to a strong correlation between $vec b$ and dipole orientation $vec r$. Most of models for $b$-dependent dipole cross section either completely miss this information, or make unjustified assumptions. We perform calculations basing on a realistic model for $vec r$-$vec b$ correlation, which significantly affect the $q$-dependence of the cross section, in particular the ratio of $psi^{,prime}(2S)$ to $J/psi$ yields. We rely on realistic potential models for the heavy quarkonium wave function, and the Lorentz-boosted Schrodinger equation. Good agreement with data on $q$-dependent diffractive electroproduction of heavy quarkonia is achieved.
Polarized pp elastic scattering at small angles in the Coulomb-nuclear interference (CNI) region offers a unique opportunity to study the spin structure of the Pomeron. Electromagnetic effects in elastic amplitude can be equivalently treated either a s Coulomb corrections to the hadronic amplitude (Coulomb phase), or as absorption corrections to the Coulomb scattering amplitude. We perform the first calculation of the Coulomb phase for the spin-flip amplitude and found it significantly exceeding the widely used non-flip Coulomb phase. The alternative description in terms of absorption corrections, though equivalent, turned out to be a more adequate approach for the Coulomb corrected spin-flip amplitude. Inspired by the recent high statistics measurements of single-spin asymmetry in the fixed-target HJET experiment at the BNL, we also performed a Regge analysis of data, aiming at disentangling the Pomeron contribution. However, in spite of an exceptional accuracy of the data, they do not allow to single out the Pomeron term, which strongly correlates with the major sub-leading Reggeons. A stable solution can be accessed only by making additional ad hoc assumptions, e.g. assuming the Pomeron to be a simple Regge pole, or fixing some unknown parameters. Otherwise, in addition to the STAR data at $sqrt{s}=$200 GeV new measurements, say at 100 GeV or 500 GeV, could become decisive.
Heavy quarkonium production in ultraperipheral nuclear collisions is described within the QCD dipole formalism. Realistic quarkonium wave functions in the rest frame are calculated solving the Schrodinger equation with a subsequent Lorentz boost to h igh energy. We rely on several selected $Qbar Q$ potentials, which provide the best description of quarkonium spectra and decay widths, as well as data on diffractive electroproduction of quarkonia on protons. Nuclear effects are calculated with the phenomenological dipole cross sections fitted to DIS data. Higher twist effect related to the lowest $Qbar Q$ Fock component of the photon, as well as the leading twist effects, related to higher components containing gluons, are included. The results for coherent and incoherent photoproduction of charmonia and bottomonia on nuclei are in a good accord with available data from the recent UPC measurements at the LHC. They can also be verified in future experiments at the planned electron-ion colliders.
Brand-new high-precision data for single-spin asymmetry $A_N(t)$ in small angle elastic $pp$ scattering from the fixed target experiment HJET at BNL at $E_{lab}=100$ and $255 mbox{ GeV}$, as well as high energy STAR measurements at $sqrt{s}=200 mbox{ GeV}$, for the first time allowed to determine the spin-flip to non-flip ratio $r_5(t)$ in a wide energy range. We introduced an essential modification in the Coulomb-nuclear interference (CNI) mechanism, missed in previous analyses. It can be formulated either as a modification of the Coulomb phase, which is much larger for the spin-flip compared with non-flip amplitudes, or as absorptive corrections to the electromagnetic interaction of hadrons. The Regge analysis singles out the Pomeron contribution to the spin-flip amplitude, which steeply rises with energy. We found the spin-flip to non-flip ratio of the Pomeron amplitudes to be nearly $-10%$, steeply rising with energy in accordance with theoretical expectations.
One of the more promising observables to probe the high energy regime of the QCD dynamics in the future Electron-Ion Colliders (EIC) is the exclusive vector meson production cross section in coherent and incoherent interactions. Such processes measur e the average spatial distribution of gluons in the target as well the fluctuations and correlations in the gluon density. In this paper we present a comprehensive analysis of the energy, photon virtuality, atomic number and momentum transfer dependencies of the coherent and incoherent cross sections considering two different models for the nuclear profile function. In particular, we present the predictions of the hot-spot model, which assumes the presence of subnucleonic degrees of freedom and an energy-dependent profile. Our results indicate that the analysis of the ratio between the incoherent and coherent cross sections and the momentum transfer distributions in the future EIC can be useful to constrain the description of the hadronic structure at high energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا