ﻻ يوجد ملخص باللغة العربية
Brand-new high-precision data for single-spin asymmetry $A_N(t)$ in small angle elastic $pp$ scattering from the fixed target experiment HJET at BNL at $E_{lab}=100$ and $255 mbox{ GeV}$, as well as high energy STAR measurements at $sqrt{s}=200 mbox{ GeV}$, for the first time allowed to determine the spin-flip to non-flip ratio $r_5(t)$ in a wide energy range. We introduced an essential modification in the Coulomb-nuclear interference (CNI) mechanism, missed in previous analyses. It can be formulated either as a modification of the Coulomb phase, which is much larger for the spin-flip compared with non-flip amplitudes, or as absorptive corrections to the electromagnetic interaction of hadrons. The Regge analysis singles out the Pomeron contribution to the spin-flip amplitude, which steeply rises with energy. We found the spin-flip to non-flip ratio of the Pomeron amplitudes to be nearly $-10%$, steeply rising with energy in accordance with theoretical expectations.
Polarized pp elastic scattering at small angles in the Coulomb-nuclear interference (CNI) region offers a unique opportunity to study the spin structure of the Pomeron. Electromagnetic effects in elastic amplitude can be equivalently treated either a
The transverse single-spin asymmetry A_N observed in high energy proton-proton collisions p^uparrow p to pi X has been found to increase with the momentum fraction x_F of the pion up to the largest measured x_F sim 0.8, where A_N simeq 40%. We consid
Pion-nucleus bremsstrahlung offers a possibility of measuring the structure functions of pion-Compton scattering from a study of the small-momentum-transfer region where the bremsstrahlung reaction is dominated by the single-photon-exchange mechanism
Improved knowledge of the nucleon structure is a crucial pathway toward a deeper understanding of the fundamental nature of the QCD interaction, and will enable important future discoveries. The experimental facilities proposed for the next decade of
We discuss the production of two pion pairs in photon collisions at high energies as it can take place in ultraperipheral collisions at hadron colliders such as the LHC. We calculate the according matrix elements in kT factorization and discuss the p