ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - M. Krause , M. Muhlleitner 2019
Precision predictions play an important role in the search for indirect New Physics effects in the Higgs sector itself. For the electroweak (EW) corrections of the Higgs bosons in extended Higgs sectors several renormalization schemes have been worke d out that provide gauge-parameter-independent relations between the input parameters and the computed observables. Our recently published program codes 2HDECAY and ewN2HDECAY allow for the computation of the EW corrections to the Higgs decay widths and branching ratios of the Two-Higgs-Doublet Model (2HDM) and the Next-to-Minimal-2HDM (N2HDM) for different renormalization schemes of the scalar mixing angles. In this paper, we present a comprehensive and complete overview over the relative size of the EW corrections to the branching ratios of the 2HDM and N2HDM neutral Higgs bosons for different applied renormalization schemes. We quantify the size of the EW corrections of Standard Model(SM)- and non-SM-like Higgs bosons and moreover also identify renormalization schemes that are well-behaved and do not induce unnaturally large corrections. We furthermore pin down decays and parameter regions that feature large EW corrections and need further treatment in order to improve the predictions. Our study sets the scene for future work in the computation of higher-order corrections to the decays of non-minimal Higgs sectors.
64 - T.N. Dao , L. Fritz , M. Krause 2019
In this paper we compute the electroweak corrections to the charged Higgs boson decay into a $W$ boson and a neutral Higgs boson in the CP-conserving NMSSM. We calculate the process in a general $R_xi$ gauge and investigate the dependence of the loop -corrected decay width on the gauge parameter $xi$. The gauge dependence arises from the mixing of different loop orders. Phenomenology requires the inclusion of mass and mixing corrections to the external Higgs bosons in order to match the experimentally measured mass values. As a result, we move away from a strict one-loop calculation and consequently mix orders in perturbation theory. Moreover, determination of the loop-corrected masses in an iterative procedure also results in the mixing of different loop orders. Gauge dependence then arises from the mismatch with tree-level Goldstone boson couplings that are applied in the loop calculation, and from the gauge dependence of the loop-corrected masses themselves. We find that the gauge dependence is significant.
We present in this paper our new program package ewN2HDECAY for the calculation of the partial decay widths and branching ratios of the Higgs bosons of the Next-to-Minimal 2-Higgs Doublet Model (N2HDM). The N2HDM is based on a general CP-conserving 2 HDM which is extended by a real scalar singlet field. The program computes the complete electroweak one-loop corrections to all non-loop-induced two-body on-shell Higgs boson decays in the N2HDM and combines them with the state-of-the-art QCD corrections that are already implemented in the existing program N2HDECAY. Most of the independent input parameters of the electroweak sector of the N2HDM are renormalized in an on-shell scheme. The soft-$mathbb{Z}_2$-breaking squared mass scale $m_{12}^2$ and the vacuum expectation value $v_S$ of the $SU(2)_L$ singlet field, however, are renormalized with $overline{text{MS}}$ conditions, while for the four scalar mixing angles $alpha _i$ ($i=1,2,3$) and $beta$ of the N2HDM, several different renormalization schemes are applied. By giving out the leading-order and the loop-corrected partial decay widths separately from the branching ratios, the program ewN2HDECAY not only allows for phenomenological analyses of the N2HDM at highest precision, it can also be used for a study of the impact of the electroweak corrections and the remaining theoretical uncertainty due to missing higher-order corrections based on a change of the renormalization scheme. The input parameters are then consistently calculated with a parameter conversion routine when switching from one renormalization scheme to the other. The latest version of the program ewN2HDECAY can be downloaded from the URL href{https://github.com/marcel-krause/ewN2HDECAY}{https://github.com/marcel-krause/ewN2HDECAY}.
54 - V. Heesen , M. Krause , R. Beck 2018
We present radio continuum maps of 12 nearby ($Dleq 27~rm Mpc$), edge-on ($igeq 76^{circ}$), late-type spiral galaxies mostly at $1.4$ and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telesc ope, Effelsberg 100-m and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic-ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of $3.0pm 1.7~rm kpc$; they show no correlation with either star-formation rate (SFR), SFR surface density ($Sigma_{rm SFR}$) or rotation speed ($V_{rm rot}$). The advection speeds range from 100 to $700~rm km,s^{-1}$ and display correlations of $Vpropto rm SFR^{0.36pm 0.06}$ and $Vpropto Sigma_{rm SFR}^{0.39pm 0.09}$; they agree remarkably well with the escape velocities ($0.5leq V/V_{rm esc}leq 2$), which can be explained by cosmic-ray driven winds. Radio haloes show the presence of disc winds in galaxies with $Sigma_{rm SFR} > 10^{-3}~rm M_{odot},yr^{-1},kpc^{-2}$ that extend over several kpc and are driven by processes related to the distributed star formation in the disc.
We study the spectral energy distribution (SED) of the radio continuum emission from the KINGFISH sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4GHz, 4.8GHz, 8.5GHz, and 10.5GHz combined with archive data allow us, for the first time, to determine the mid-radio continuum (1-10 GHz, MRC) bolometric luminosities and further present calibration relations vs. the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo (MCMC) technique leading to measurements for the nonthermal spectral index and the thermal fraction f_th with mean values of alpha_nt=0.97+-0.16 (0.79+-0.15 for the total spectral index) and f_th= 10% +- 9% at 1.4 GHz. The MRC luminosity changes over ~3 orders of magnitude in the sample. The thermal emission is responsible for ~23% of the MRC on average. We also compare the extinction-corrected diagnostics of star formation rate with the thermal and nonthermal radio tracers and derive the first star formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing star formation rate surface density, indicating the effect of the star formation feedback on the cosmic ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with star formation rate, due to the amplification of the magnetic fields in star forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star forming galaxies are detected.
We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected core made of a small number of lar ge companies which control a significant part of the global economy. Here we show how a simple, adaptive rich get richer dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy.
A major paradigm shift has recently revolutionized our picture of globular clusters (GC) that were long thought to be simple systems of coeval stars born out of homogeneous material. Indeed, detailed abundance studies of GC long-lived low-mass stars performed with 8-10m class telescopes, together with high-precision photometry of Galactic GCs obtained with HST,have brought compelling clues on the presence of multiple stellar populations in individual GCs. These stellar subgroups can be recognized thanks to their different chemical properties (more precisely by abundance differences in light elements from carbon to aluminium; see Bragaglia, this volume) and by the appearance of multimodal sequences in the colour-magnitude diagrams (see Piotto, this volume). This has a severe impact on our understanding of the early evolution of GCs, and in particular of the possible role that massive stars played in shaping the intra-cluster medium (ICM) and in inducing secondary star formation. Here we summarize the detailed timeline we have recently proposed for the first 40 Myrs in the lifetime of a typical GC following the general ideas of our so-called Fast Rotating Massive stars scenario (FRMS, Decressin et al. 2007b) and taking into account the dynamics of interstellar bubbles produced by stellar winds and supernovae. More details can be found in Krause et al. (2012, 2013).
Based on a combined quantum-classical treatment, a complete study of the strong field dynamics of H2+, i.e. including all nuclear and electronic DOF as well as dissociation and ionization, is presented. We find that the ro-vibrational nuclear dynamic s enhances dissociation and, at the same time, suppresses ionization, confirming experimental observations by I. Ben-Itzhak et al. [Phys. Rev. Lett. 95, 073002 (2005)]. In addition and counter-intuitively, it is shown that for large initial vibrational excitation ionization takes place favorably at large angles between the laser polarization and molecular axis. A local ionization model delivers a transparent explanation of these findings.
High resolution observations with the NIR adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensiona l high resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, focusing on stellar mass loss. This leads to clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec scale region (accessible via SINFONI observations) to the (sub-)parsec scale region (observable with the MIDI instrument and via water maser emission). In this work, we concentrate on the effects of a parametrised turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Input parameters are constrained by observations of the nearby Seyfert 2 galaxy NGC 1068. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8 to 0.9 pc, gas masses of 1.0e6 solar masses and mass transfer rates of 0.025 solar masses per year through the inner rim of the disc. This shows that our large scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well.
76 - V. Heesen 2008
We present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ra y bulk speed as (300+/-30) km/s, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا