ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of massive stars in the turbulent infancy of Galactic globular clusters: Feedback on the intracluster medium, and detailed timeline

94   0   0.0 ( 0 )
 نشر من قبل Corinne Charbonnel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major paradigm shift has recently revolutionized our picture of globular clusters (GC) that were long thought to be simple systems of coeval stars born out of homogeneous material. Indeed, detailed abundance studies of GC long-lived low-mass stars performed with 8-10m class telescopes, together with high-precision photometry of Galactic GCs obtained with HST,have brought compelling clues on the presence of multiple stellar populations in individual GCs. These stellar subgroups can be recognized thanks to their different chemical properties (more precisely by abundance differences in light elements from carbon to aluminium; see Bragaglia, this volume) and by the appearance of multimodal sequences in the colour-magnitude diagrams (see Piotto, this volume). This has a severe impact on our understanding of the early evolution of GCs, and in particular of the possible role that massive stars played in shaping the intra-cluster medium (ICM) and in inducing secondary star formation. Here we summarize the detailed timeline we have recently proposed for the first 40 Myrs in the lifetime of a typical GC following the general ideas of our so-called Fast Rotating Massive stars scenario (FRMS, Decressin et al. 2007b) and taking into account the dynamics of interstellar bubbles produced by stellar winds and supernovae. More details can be found in Krause et al. (2012, 2013).



قيم البحث

اقرأ أيضاً

Stars in globular clusters (GCs) lose a non negligible amount of mass during their post-main sequence evolution. This material is then expected to build up a substantial intra-cluster medium (ICM) within the GC. However, the observed gas content in G Cs is a couple of orders of magnitude below these expectations. Here we follow the evolution of this stellar wind material through hydrodynamical simulations to attempt to reconcile theoretical predictions with observations. We test different mechanisms proposed in the literature to clear out the gas such as ram-pressure stripping by the motion of the GC in the Galactic halo medium and ionisation by UV sources. We use the code ramses to run 3D hydrodynamical simulations to study for the first time the ICM evolution within discretised multi-mass GC models including stellar winds and full radiative transfer. We find that the inclusion of both ram-pressure and ionisation is mandatory to explain why only a very low amount of ionised gas is observed in the core of GCs. The same mechanisms operating in ancient GCs that clear the gas could also be efficient at younger ages, meaning that young GCs would not be able to retain gas and form multiple generations of stars as assumed in many models to explain multiple populations. However, this rapid clearing of gas is consistent with observations of young massive clusters.
We present a pilot study on the origin and assembly history of the ICL for four galaxy clusters at 0.44<z<0.57 observed with the Hubble Space Telescope from the Cluster Lensing and Supernova Survey with Hubble (CLASH) sample. Using this sample of clu sters we set an empirical limit on the amount of scatter in ICL surface brightness profiles of such clusters at z=0.5 and constrain the progenitor population and formation mechanism of the ICL by measuring the ICL surface brightness profile, the ICL color and color gradient, and the total ICL luminosity within 10<r<110 kpc. The observed scatter is physical, which we associate with differences in ICL assembly process, formation epoch, and/or ICL content. Using stellar population synthesis models we transform the observed colors to metallicity. For three of the four clusters we find clear negative gradients that, on average, decrease from super solar in the central regions of the BCG to sub-solar in the ICL. Such negative color/metallicity gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the BCG. We also find that the ICL at 110 kpc has a color comparable to m*+2 red sequence galaxies and a total luminosity between 10<r<110 kpc of 4-8 L*. This suggests that the ICL is dominated by stars liberated from galaxies with L>0.2 L* and that neither dwarf disruption nor major mergers with the BCG alone can explain the observed level of luminosity and remain consistent with either the observed evolution in the faint end slope of the luminosity function or predictions for the number of BCG major mergers since z=1. Taken together, the results of this pilot study are suggestive of a formation history for these clusters in which the ICL is built-up by the stripping of >0.2 L* galaxies, and disfavor significant contribution to the ICL by dwarf disruption or major mergers with the BCG.
91 - Juan P. Madrid 2018
The large-scale distribution of globular clusters in the central region of the Coma cluster of galaxies is derived through the analysis of Hubble Space Telescope/Advanced Camera for Surveys data. Data from three different HST observing programs are c ombined in order to obtain a full surface density map of globular clusters in the core of Coma. A total of 22,426 Globular cluster candidates were selected through a detailed morphological inspection and the analysis of their magnitude and colors in two wavebands, F475W (Sloan g) and F814W (I). The spatial distribution of globular clusters defines three main overdensities in Coma that can be associated with NGC 4889, NGC 4874, and IC 4051 but have spatial scales five to six times larger than individual galaxies. The highest surface density of globular clusters in Coma is spatially coincidental with NGC 4889. The most extended overdensity of globular clusters is associated with NGC 4874. Intracluster globular clusters also form clear bridges between Coma galaxies. Red globular clusters, which agglomerate around the center of the three main subgroups, reach higher surface densities than blue ones.
108 - F. Calura 2015
Globular clusters are considerably more complex structures than previously thought, harbouring at least two stellar generations which present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in globular clusters mostl y assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most globular clusters further requires that the supernova-enriched gas ejected by the FG is completely lost within ~30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper, we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass M_tot ~ 10^7 M_sun is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort and merge, they carve narrow tunnels which reach deeper and deeper towards the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ~40% of the pristine gas, and that after 14 Myr, ~ 99% of the initial gas mass has been removed.
Even though plenty of symbiotic stars (SySts) have been found in the Galactic field and nearby galaxies, not a single one has ever been confirmed in a Galactic globular cluster (GC). We investigate the lack of such systems in GCs for the first time b y analysing 144 GC models evolved with the MOCCA code, which have different initial properties and are roughly representative of the Galactic GC population. We focus here on SySts formed through the wind-accretion channel, which can be consistently modelled in binary population synthesis codes. We found that the orbital periods of the majority of such SySts are sufficiently long (${gtrsim10^3}$ d) so that, for very dense GC models, dynamical interactions play an important role in destroying their progenitors before the present day (${sim11-12}$ Gyr). In less dense GC models, some SySts are still predicted to exist. However, these systems tend to be located far from the central parts (${gtrsim70}$ per cent are far beyond the half-light radius) and are sufficiently rare (${lesssim1}$ per GC per Myr), which makes their identification rather difficult in observational campaigns. We propose that future searches for SySts in GCs should be performed in the outskirts of nearby low-density GCs with sufficiently long half-mass relaxation times and relatively large Galactocentric distances. Finally, we obtained spectra of the candidate proposed in $omega$ Cen (SOPS IV e-94) and showed that this object is most likely not a SySt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا