ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed an analysis of case events and statistics of positive ionospheric storms in the dayside region of the equatorial ionization anomaly during recurrent geomagnetic storms (RGSs), which dominate in geomagnetic and ionospheric conditions on the declining phase of solar activity in 2004 to 2008. It is shown that total electron content (TEC) has a tendency to minimize before the beginning of RGSs and to peak 3 to 4 days after, i.e. on the RGS recovery phase produced by high-intensity long-duration continuous auroral activity. The maximum of TEC coincides with the maximum of solar wind velocity within high-speed solar wind streams. An analysis of electron content vertical profiles, derived from two independent methods using ionosondes and COSMIC/FORMOSAT-3 radio occultation, showed that in the maximum of an ionospheric storm on 28 March 2008, the F2 layer thickens, NmF2 increases by ~50% and hmF2 elevates by a few tens of kilometers. The response of positive ionospheric storms to solar, heliospheric and geomagnetic drivers reveals a prominent longitudinal asymmetry. In the longitudinal range from -90 deg to 90 deg, the solar illumination plays a major role, and in the range from 90 deg to -120 deg, the influence of heliospheric and geomagnetic drivers becomes significant. The highest correlations of the TEC enhancements with the heliospheric and geomagnetic drivers were found during December - February period (r increased from ~ 0.3 to ~0.5). We speculate that the dynamics controlling this might result from an effect of solar zenith angle, storm-time effects of thermospheric Sum(O/N2) enhancement, and penetrating electric fields of interplanetary and magnetospheric origin.
313 - M. Huang , F. Zhou , R. Wada 2012
Subbarrier fusion of the 7Li + 12C reaction is studied using an antisymmetrized molecular dynamics model (AMD) with an after burner, GEMINI. In AMD, 7Li shows an alpha + t structure at its ground state and it is significantly deformed. Simulations ar e made near the Coulomb barrier energies, i.e., E_{cm} = 3 - 8 MeV. The total fusion cross section of the AMD + GEMINI calculations as a function of incident energy is compared to the experimental results and both are in good agreement at E_{cm} > 3 MeV. The cross section for the different residue channels of the AMD + GEMINI at E_{cm} = 5 MeV is also compared to the experimental results.
69 - M. Huang , M. Vuorinen , X. Wang 2012
Suppose that $E$ denotes a real Banach space with the dimension at least 2. The main aim of this paper is to show that a domain $D$ in $E$ is a $psi$-uniform domain if and only if $Dbackslash P$ is a $psi_1$-uniform domain, and $D$ is a uniform domai n if and only if $Dbackslash P$ also is a uniform domain, whenever $P$ is a closed countable subset of $D$ satisfying a quasihyperbolic separation condition. This condition requires that the quasihyperbolic distance (w.r.t. $D$) between each pair of distinct points in $P$ has a lower bound greater than or equal to $frac{1}{2}$.
A set of reduced Hall magnetohydrodynamic (MHD) equations are used to evaluate the stability of large aspect ratio current sheets to the formation of plasmoids (secondary islands). Reconnection is driven by resistivity in this analysis, which occurs at the resistive skin depth $d_eta equiv S_L^{-1/2} sqrt{L v_A/gamma}$, where $S_L$ is the Lundquist number, $L$ the length of the current sheet, $v_A$ the Alfv{e}n speed, and $gamma$ the growth rate. Modifications to a recent resistive MHD analysis [N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, Phys. Plasmas {bf 14}, 100703 (2007)] arise when collisions are sufficiently weak that $d_eta$ is shorter than the ion skin depth $d_i equiv c/omega_{pi}$. Secondary islands grow faster in this Hall MHD regime: the maximum growth rate scales as $(d_i/L)^{6/13} S_L^{7/13} v_A/L$ and the number of plasmoids as $(d_i/L)^{1/13} S_L^{11/26}$, compared to $S_L^{1/4} v_A/L$ and $S^{3/8}$, respectively, in resistive MHD.
572 - M. Huang , R. Wada , Z. Chen 2010
Isotope yields have been analyzed within the framework of a Modified Fisher Model to study the power law yield distribution of isotopes in the multifragmentation regime. Using the ratio of the mass dependent symmetry energy coefficient relative to th e temperature, $a_{sym}/T$, extracted in previous work and that of the pairing term, $a_{p}/T$, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields have been corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of $^{12}C$ show a power law distribution, $Y(N,Z)/Y(^{12}C) sim A^{-tau}$, in the mass range of $1 le A le 30$ and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted $tau$ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple de-excitation model, which the power law distribution of the primary isotopes is determined to $tau^{prim} = 2.4 pm 0.2$, suggesting that the disassembling system at the time of the fragment formation is indeed at or very near the critical point.
103 - M. Huang , A. Bonasera , Z. Chen 2010
We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4He-3He liquid mixtures. We present experimental results which reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.
58 - M. Huang , Z. Chen , S. Kowalski 2010
Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the external (conjugate) field H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m - scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally.
65 - M. Huang , Z. Chen , S. Kowalski 2010
The relative isobaric yields of fragments produced in a series of heavy ion induced multifragmentation reactions have been analyzed in the framework of a Modified Fisher Model, primarily to determine the ratio of the symmetry energy coefficient to th e temperature, $a_a/T$, as a function of fragment mass A. The extracted values increase from 5 to ~16 as A increases from 9 to 37. These values have been compared to the results of calculations using the Antisymmetrized Molecular Dynamics (AMD) model together with the statistical decay code Gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the ratios determined from fitting the primary fragment distributions from the AMD model calculation are ~ 4 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا