ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A

59   0   0.0 ( 0 )
 نشر من قبل Meirong Huang
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the external (conjugate) field H. The external field is just given by the difference in chemical potentials of the neutrons and protons of the two sources. To distinguish from previously employed isoscaling relationships, this approach is dubbed: m - scaling. We discuss the relationship between this framework and the standard isoscaling formalism and point out some substantial differences in interpretation of experimental results which might result. These should be investigated further both theoretically and experimentally.

قيم البحث

اقرأ أيضاً

In this paper, we give some new thoughts about the classical gradient method (GM) and recall the proposed fractional order gradient method (FOGM). It is proven that the proposed FOGM holds a super convergence capacity and a faster convergence rate ar ound the extreme point than the conventional GM. The property of asymptotic convergence of conventional GM and FOGM is also discussed. To achieve both a super convergence capability and an even faster convergence rate, a novel switching FOGM is proposed. Moreover, we extend the obtained conclusion to a more general case by introducing the concept of p-order Lipschitz continuous gradient and p-order strong convex. Numerous simulation examples are provided to validate the effectiveness of proposed methods.
Active background reduction in high resolution calorimeters is a promising approach to achieve ultimate sensitivity in neutrinoless double beta decay experiments. We propose Cerenkov emission from beta rays in bolometric crystals as a viable alternat ive to scintillation. This novel approach could broaden the range of materials of interest for calorimetric searches of the double beta decay. We discuss the optical properties of TeO$_2$ crystals, as a show case.
The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86Kr (25 MeV/nucleon), 64Ni (25 MeV/nucleon) and 136Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coeff icient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission E*/A = 2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters alpha which, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ~25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova.
119 - W.N. Catford 2013
The clustering of nucleons in nuclei is a widespread but elusive phenomenon for study. Here, we wish to highlight the variety of theoretical approaches, and demonstrate how they are mutually supportive and complementary. On the experimental side, we describe recent advances in the study of the classic cluster nucleus 24Mg. Also, recent studies of clustering in nuclei approaching the neutron drip line are described. In the region near N/Z=2, both theory and experiment now suggest that multi-centre cluster structure is important, in particular for the very neutron rich beryllium isotopes.
43 - Mike Williams 2017
This study explores various data-driven methods for performing background-model selection, and for assigning uncertainty on the signal-strength estimator that arises due to the choice of background model. The performance of these methods is evaluated in the context of several realistic example problems. Furthermore, a novel strategy is proposed that greatly simplifies the process of performing a bump hunt when little is assumed to be known about the background. This new approach is shown to greatly reduce the potential bias in the signal-strength estimator, without degrading the sensitivity by increasing the variance, and to produce confidence intervals with valid coverage properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا