ﻻ يوجد ملخص باللغة العربية
A set of reduced Hall magnetohydrodynamic (MHD) equations are used to evaluate the stability of large aspect ratio current sheets to the formation of plasmoids (secondary islands). Reconnection is driven by resistivity in this analysis, which occurs at the resistive skin depth $d_eta equiv S_L^{-1/2} sqrt{L v_A/gamma}$, where $S_L$ is the Lundquist number, $L$ the length of the current sheet, $v_A$ the Alfv{e}n speed, and $gamma$ the growth rate. Modifications to a recent resistive MHD analysis [N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, Phys. Plasmas {bf 14}, 100703 (2007)] arise when collisions are sufficiently weak that $d_eta$ is shorter than the ion skin depth $d_i equiv c/omega_{pi}$. Secondary islands grow faster in this Hall MHD regime: the maximum growth rate scales as $(d_i/L)^{6/13} S_L^{7/13} v_A/L$ and the number of plasmoids as $(d_i/L)^{1/13} S_L^{11/26}$, compared to $S_L^{1/4} v_A/L$ and $S^{3/8}$, respectively, in resistive MHD.
Magnetohydrodynamic turbulence and magnetic reconnection are ubiquitous in astrophysical environments. In most situations, these processes do not occur in isolation, but interact with each other. This renders a comprehensive theory of these processes
Properties of plasmoid-dominated turbulent reconnection in a low-$beta$ background plasma are investigated by resistive magnetohydrodynamic (MHD) simulations. In the $beta_{rm in} < 1$ regime, where $beta_{rm in}$ is plasma $beta$ in the inflow regio
We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields $(B=3$ T), advected by supersonic, sub-Alfvenic carbon plasma flows $(V_{in}=50$ km/s), are
(abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perh
Within the resistive magnetohydrodynamic model, high-Lundquist number reconnection layers are unstable to the plasmoid instability, leading to a turbulent evolution where the reconnection rate can be independent of the underlying resistivity. However