ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall magnetohydrodynamic reconnection in the plasmoid unstable regime

416   0   0.0 ( 0 )
 نشر من قبل Scott Baalrud
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A set of reduced Hall magnetohydrodynamic (MHD) equations are used to evaluate the stability of large aspect ratio current sheets to the formation of plasmoids (secondary islands). Reconnection is driven by resistivity in this analysis, which occurs at the resistive skin depth $d_eta equiv S_L^{-1/2} sqrt{L v_A/gamma}$, where $S_L$ is the Lundquist number, $L$ the length of the current sheet, $v_A$ the Alfv{e}n speed, and $gamma$ the growth rate. Modifications to a recent resistive MHD analysis [N. F. Loureiro, A. A. Schekochihin, and S. C. Cowley, Phys. Plasmas {bf 14}, 100703 (2007)] arise when collisions are sufficiently weak that $d_eta$ is shorter than the ion skin depth $d_i equiv c/omega_{pi}$. Secondary islands grow faster in this Hall MHD regime: the maximum growth rate scales as $(d_i/L)^{6/13} S_L^{7/13} v_A/L$ and the number of plasmoids as $(d_i/L)^{1/13} S_L^{11/26}$, compared to $S_L^{1/4} v_A/L$ and $S^{3/8}$, respectively, in resistive MHD.

قيم البحث

اقرأ أيضاً

Magnetohydrodynamic turbulence and magnetic reconnection are ubiquitous in astrophysical environments. In most situations, these processes do not occur in isolation, but interact with each other. This renders a comprehensive theory of these processes highly challenging. Here, we propose a theory of magnetohydrodynamic turbulence driven at large scale that self-consistently accounts for the mutual interplay with magnetic reconnection occurring at smaller scales. Magnetic reconnection produces plasmoids that grow from turbulence-generated noise and eventually disrupt the sheet-like structures in which they are born. The disruption of these structures leads to a modification of the turbulent energy cascade, which, in turn, exerts a feedback effect on the plasmoid formation via the turbulence-generated noise. The energy spectrum in this plasmoid-mediated range steepens relative to the standard inertial range and does not follow a simple power law. As a result of the complex interplay between turbulence and reconnection, we also find that the length scale which marks the beginning of the plasmoid-mediated range and the dissipation length scale do not obey true power laws. The transitional magnetic Reynolds number above which the plasmoid formation becomes statistically significant enough to affect the turbulent cascade is fairly modest, implying that plasmoids are expected to modify the turbulent path to dissipation in many astrophysical systems.
Properties of plasmoid-dominated turbulent reconnection in a low-$beta$ background plasma are investigated by resistive magnetohydrodynamic (MHD) simulations. In the $beta_{rm in} < 1$ regime, where $beta_{rm in}$ is plasma $beta$ in the inflow regio n, the reconnection site is dominated by shocks and shock-related structures and plasma compression is significant. The effective reconnection rate increases from $0.01$ to $0.02$ as $beta_{rm in}$ decreases. We hypothesize that plasma compression allows faster reconnection rate, and then we estimate a speed-up factor, based on a compressible MHD theory. We validate our prediction by a series of MHD simulations. These results suggest that the plasmoid-dominated reconnection can be twice faster than expected in the $beta ll 1$ environment in a solar corona.
We present a detailed study of magnetic reconnection in a quasi-two-dimensional pulsed-power driven laboratory experiment. Oppositely directed magnetic fields $(B=3$ T), advected by supersonic, sub-Alfvenic carbon plasma flows $(V_{in}=50$ km/s), are brought together and mutually annihilate inside a thin current layer ($delta=0.6$ mm). Temporally and spatially resolved optical diagnostics, including interferometry, Faraday rotation imaging and Thomson scattering, allow us to determine the structure and dynamics of this layer, the nature of the inflows and outflows and the detailed energy partition during the reconnection process. We measure high electron and ion temperatures $(T_e=100$ eV, $T_i=600$ eV), far in excess of what can be attributed to classical (Spitzer) resistive and viscous dissipation. We observe the repeated formation and ejection of plasmoids, which we interpret as evidence of two-fluid effects in our experiment.
(abridged) Magnetic reconnection is the topological reconfiguration of the magnetic field in a plasma, accompanied by the violent release of energy and particle acceleration. Reconnection is as ubiquitous as plasmas themselves, with solar flares perh aps the most popular example. Over the last few years, the theoretical understanding of magnetic reconnection in large-scale fluid systems has undergone a major paradigm shift. The steady-state model of reconnection described by the famous Sweet-Parker (SP) theory, which dominated the field for ~50 years, has been replaced with an essentially time-dependent, bursty picture of the reconnection layer, dominated by the continuous formation and ejection of multiple secondary islands (plasmoids). Whereas in the SP model reconnection was predicted to be slow, a major implication of this new paradigm is that reconnection in fluid systems is fast (i.e., independent of the Lundquist number), provided that the system is large enough. This conceptual shift hinges on the realization that SP-like current layers are violently unstable to the plasmoid instability - implying, therefore, that such current sheets are super-critically unstable and thus can never form in the first place. This suggests that the formation of a current sheet and the subsequent reconnection process cannot be decoupled, as is commonly assumed. This paper provides an introductory-level overview of the recent developments in reconnection theory and simulations that led to this essentially new framework. We briefly discuss the role played by the plasmoid instability in selected applications, and describe some of the outstanding challenges that remain at the frontier of this subject. Amongst these are the analytical and numerical extension of the plasmoid instability to (i) 3D and (ii) non-MHD regimes. New results are reported in both cases.
95 - A. Stanier , W. Daughton , A. Le 2019
Within the resistive magnetohydrodynamic model, high-Lundquist number reconnection layers are unstable to the plasmoid instability, leading to a turbulent evolution where the reconnection rate can be independent of the underlying resistivity. However , the physical relevance of these results remains questionable for many applications. First, the reconnection electric field is often well above the runaway limit, implying that collisional resistivity is invalid. Furthermore, both theory and simulations suggest that plasmoid formation may rapidly induce a transition to kinetic scales, due to the formation of thin current sheets. Here, this problem is studied for the first time using a first-principles kinetic simulation with a Fokker-Planck collision operator in 3D. The low-$beta$ reconnecting current layer thins rapidly due to Joule heating before onset of the oblique plasmoid instability. Linear growth rates for standard ($k_y = 0$) tearing modes agree with semi-collisional boundary layer theory, but the angular spectrum of oblique ($|k_y|>0$) modes is significantly narrower than predicted. In the non-linear regime, flux-ropes formed by the instability undergo complex interactions as they are advected and rotated by the reconnection outflow jets, leading to a turbulent state with stochastic magnetic field. In a manner similar to previous 2D results, super-Dreicer fields induce a transition to kinetic reconnection in thin current layers that form between flux-ropes. These results may be testable within new laboratory experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا