ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - M. Nori 2015
According to the second Fermi LAT Catalog (2FGL), about one third of the gamma-ray sources listed have no assigned counterparts at lower energies. Many statistical methods have been developed to find proper counterparts for these sources. We explore the sky area covered at low radio frequency by Westerbork in the Southern Hemisphere (WISH) survey to search for blazar-like associations among the unidentified gamma-ray sources listed in the 2FGL (UGSs). Searching the WISH and NRAO VLA Sky Survey (NVSS) radio surveys within the positional uncertainty regions of the 2FGL UGSs, we select as gamma-ray blazar candidates the radio sources characterized by flat radio spectra between 352 MHz and 1400 MHz. We propose new gamma-ray blazar associations for eight UGSs and we also discuss their spectral properties at low radio frequencies. We compare the radio flux density distribution of the low radio frequency gamma-ray blazar candidates with that of gamma-ray blazars associated with other methods. We find significant differences between these distributions. Finally, we discuss the results of this association method and its possible applicability to other regions of the sky and future radio surveys.
76 - K. Hada , M. Giroletti , M. Kino 2015
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elus ive. Based on previous radio/TeV correlation events, the unresolved jet base (radio core) and the peculiar knot HST-1 at 120 pc from the nucleus are proposed as candidate site(s) of gamma-ray production. Here we report our intensive, high-resolution radio monitoring observations of the M87 jet with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray light curves obtained by the Fermi Large Area Telescope. During this period, an elevated level of the M87 flux is reported at TeV with VERITAS. We detected a remarkable flux increase in the radio core with VERA at 22/43 GHz coincident with the VHE activity. Meanwhile, HST-1 remained quiescent in terms of its flux density and structure in the radio band. These results strongly suggest that the TeV gamma-ray activity in 2012 originates in the jet base within 0.03 pc (projected) from the central black hole.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of active galactic nuclei. For a summary, we refer to the paper.
56 - K. Hada , M. Giroletti , M. Kino 2014
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elus ive. Based on previous radio/TeV correlation events, the unresolved jet base (radio core) and the peculiar knot HST-1 at >120 pc from the nucleus are proposed as candidate site(s) of gamma-ray production. Here we report our intensive, high-resolution radio monitoring observations of the M87 jet with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012. During this period, an elevated level of the M87 flux is reported at TeV with VERITAS. We detected a remarkable flux increase in the radio core with VERA at 22/43 GHz coincident with the VHE activity. Meanwhile, HST-1 remained quiescent in terms of its flux density and structure at radio. These results strongly suggest that the TeV gamma-ray activity in 2012 originates in the jet base within 0.03 pc (projected) from the central supermassive black hole.
We analyzed data in polarized intensity obtained with the Very Long Baseline Array (VLBA) at twelve epochs (one observation per month from January to December 2011) at 15, 24, and 43 GHz. For the absolute orientation of the electric vector position a ngles (EVPA) we used the D-terms method. We also used gamma-ray data from the Fermi Large Area Telescope on weekly time bins throughout 2011. The source shows polarized emission, and its properties vary with time, frequency, and location along the jet. The core mean polarization fraction is generally between 1% and 2%, with a 4% peak at 43 GHz in March; the polarization angle is variable, mainly at 15 GHz, where it changes frequently, and less so at 43 GHz, where it oscillates in the range 114 - 173 deg. The jet polarization properties are more stable, with a fractional polarization of around 16% and a polarization angle nearly perpendicular to the jet axis. The average flux and photon index at gamma-ray energies are (17.7+-0.5)x10^8 ph cm^-2 s^-1 and the photon index is 1.77+-0.02. The gamma-ray light curve shows variability, with a main peak that appears to be associated with the peak in the core polarized emission at 43 GHz, as well as with the total intensity light curve. A discrete correlation function analysis yields a correlation coefficient of 0.54 at zero delay, with a significance level above 99.7%. We accurately determine the polarization properties of Mrk 421, both in the core and in the jet region. The radio and gamma-ray light curves are correlated. The observed EVPA variability at 15 GHz is partly due to opacity and partly to a variable Faraday rotation effect. To explain the residual variability of the intrinsic polarization angle and the low degree of polarization in the core region, we invoke a blend of variable cross-polarized subcomponents with different polarization properties within the beam.
74 - K. Hada , M. Giroletti , M. Kino 2014
We report our intensive radio monitoring observations of the jet in M87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray l ight curves obtained by the Fermi-LAT. During this period, an elevated level of the M87 flux is reported at VHE gamma rays. We detected a remarkable increase of the radio flux density from the unresolved jet base (radio core) with VERA at 22 and 43GHz coincident with the VHE activity. Meanwhile, we confirmed with EVN at 5GHz that HST-1 (an alternative gamma-ray production candidate site) remained quiescent in terms of its flux density and structure. These results in the radio bands strongly suggest that the VHE gamma-ray activity in 2012 originates in the jet base within 0.03pc or 56 Schwarzschild radii from the central supermassive black hole. We further conducted VERA astrometry for the M87 core during the flaring period, and detected core shifts between 22 and 43GHz. We also discovered a clear frequency-dependent evolution of the radio core flare at 43, 22 and 5GHz; the radio flux density increased more rapidly at higher frequencies with a larger amplitude, and the light curves clearly showed a time-lag between the peaks at 22 and 43GHz. This indicates that a new radio-emitting component was created near the black hole in the period of the VHE event, and then propagated outward with progressively decreasing synchrotron opacity. By combining these results, we estimated an apparent speed of the newborn component, and derived a sub-luminal speed of less than ~0.2c. This value is significantly slower than the super-luminal (~1.1c) features that appeared from the core during the prominent VHE flaring event in 2008, suggesting that the stronger VHE activity can be associated with the production of the higher Lorentz factor jet.
The advent of Fermi is changing our understanding on the radio and gamma-ray emission in Active Galactic Nuclei. In fact, contrary to previous campaigns, Fermi mission reveals that BL Lac objects are the most abundant emitters in gamma-ray band. Howe ver, since they are relatively weak sources, most of their parsec scale structure as their multifrequency properties are poorly understood and/or not systematically investigated. Our main goal is to analyse, using a multiwavelength approach, the nuclear properties of an homogeneous sample of 42 faint BL Lacs, selected, for the first time in literature, with no constraint on their radio and gamma-ray flux densities/emission. We began asking and obtaining new VLBA observations at 8 and 15 GHz for the whole sample. We derived fundamental parameters as radio flux densities, spectral index information, and parsec scale structure. Moreover, we investigated their gamma-ray emission properties using the 2LAT Fermi results. Here, we report our preliminary results on the radio and gamma-ray properties of this sample of faint BL Lacs. In the next future, we will complete the multiwavelength analysis.
124 - R. Lico , M. Giroletti 2012
We present a preliminary analysis of new high resolution radio observations of the nearby TeV blazar Markarian 421 (z=0.031). This study is part of an ambitious multifrequency campaign, with observations in sub-mm (SMA), optical/IR (GASP), UV/X-ray ( Swift, RXTE, MAXI), and gamma rays (Fermi-LAT, MAGIC, VERITAS). In this manuscript we consider only data obtained with the Very Long Baseline Array (VLBA) at seven epochs (one observation per month from January to July 2011) at 15 and 23.8 GHz. We investigate the inner jet structure on parsec scales through the study of model-fit components for each epoch. We identified 5-6 components which are consistent with being stationary during the 6-month period reported here. The aim is to try to shed light on questions such as the nature of radiating particles, the connection between radio and gamma-ray emission, the location of emitting regions and the origin of the flux variability.
We present here our results on a complete sample of Brightest Cluster Galaxies (BCGs) in nearby Abell Clusters (distance class <3). Combined with data from the literature, we provide parsec scale information for 34 BCGs. We found that also radio loud BCGs have core structures very complex (e.g. 4C 26.42 in Abell 1795). Moreover, we noted a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Among resolved sources, those in cool-core clusters tend to have two-sided parsec scale jets, while those in less relaxed clusters have predominantly one-sided parsec scale jets. We suggest that this difference is caused by the interplay between the jets and the surrounding medium. Evidence of recurrent activity is also found in BCGs in cool-core clusters. For two peculiar cases of BCGs (IC 712 in Abell 1314 and NGC 6047 in Abell 2151) we asked and obtained new VLBA observations a 1.6 GHz. We discuss them here for the first time.
We present an update of the parsec scale properties of the Bologna Complete Sample consisting of 95 radio sources from the B2 Catalog of Radio Sources and the Third Cambridge Revised Catalog (3CR), with z < 0.1. Thanks to recent new data we have now parsec scale images for 76 sources of the sample. Most of them show a one-sided jet structure but we find a higher fraction of two-sided sources in comparison with previous flux-limited VLBI surveys. A few peculiar sources are presented and discussed in more detail.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا