ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear properties of Brightest Cluster Galaxies: results and new observations for two peculiar cases

110   0   0.0 ( 0 )
 نشر من قبل Elisabetta Liuzzo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here our results on a complete sample of Brightest Cluster Galaxies (BCGs) in nearby Abell Clusters (distance class <3). Combined with data from the literature, we provide parsec scale information for 34 BCGs. We found that also radio loud BCGs have core structures very complex (e.g. 4C 26.42 in Abell 1795). Moreover, we noted a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Among resolved sources, those in cool-core clusters tend to have two-sided parsec scale jets, while those in less relaxed clusters have predominantly one-sided parsec scale jets. We suggest that this difference is caused by the interplay between the jets and the surrounding medium. Evidence of recurrent activity is also found in BCGs in cool-core clusters. For two peculiar cases of BCGs (IC 712 in Abell 1314 and NGC 6047 in Abell 2151) we asked and obtained new VLBA observations a 1.6 GHz. We discuss them here for the first time.

قيم البحث

اقرأ أيضاً

312 - Yen-Ting Lin 2009
A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a statistical model of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L_tot > 4x10^11 L_sun) are unlikely (probability <3x10^-4) to be drawn from the LD defined by all red cluster galaxies more luminous than M_r=-20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine & Richstone (1977) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.
119 - A. Pipino 2010
We study the properties of Brightest Cluster Galaxies (BCGs) drawn from a catalogue of more than 69000 clusters in the SDSS DR6 based on the adaptive matched filter technique (AMF, Szabo et al., 2010). Our sample consists of more than 14300 galaxies in the redshift range 0.1-0.3. We test the catalog by showing that it includes well-known BCGs which lie in the SDSS footprint. We characterize the BCGs in terms of r-band luminosities and optical colours as well as their trends with redshift. In particular, we define and study the fraction of blue BCGs, namely those that are likely to be missed by either colour-based cluster surveys and catalogues. Richer clusters tend to have brighter BCGs, however less dominant than in poorer systems. 4-9% of our BCGs are at least 0.3 mag bluer in the g-r colour than the red-sequence at their given redshift. Such a fraction decreases to 1-6% for clusters above a richness of 50, where 3% of the BCGs are 0.5 mag below the red-sequence. A preliminary morphological study suggests that the increase in the blue fraction at lower richnesses may have a non-negligible contribution from spiral galaxies. We show that a colour selection based on the g-r red-sequence or on a cut at colour u-r >2.2 can lead to missing the majority of such blue BCGs. We also extend the colour analysis to the UV range by cross-matching our catalogue with publicly available data from Galex GR4 and GR5. We show a clear correlation between offset from the optical red-sequence and the amount of UV-excess. Finally, we cross-matched our catalogue with the ACCEPT cluster sample (Cavagnolo et al., 2009), and find that blue BCGs tend to be in clusters with low entropy and short cooling times. That is, the blue light is presumably due to recent star formation associated to gas feeding by cooling flows. (abridged)
(Abridged) We have derived detailed R band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag/arcsec^2. Light profiles were initially fitted with a Ser sics R^(1/n) model, but we found that 205 (~48) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n~1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCGs luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ~0.2 mag than single profile BCG. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M_R=-23.8 +/- 0.6 mag for single profile BCGs and M_R=-24.0 +/- 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best fit slope of the Kormendy relation for the whole sample is a = 3.13 +/- 0.04$. However, when fitted separately, single and double profile BCGs show different slopes: a_(single) = 3.29 +/- 0.06 and a_(double)= 2.79 +/- 0.08. On the other hand, we did not find differences between these two BCGs categories when we compared global cluster properties such as the BCG-projected position relative to the cluster X-ray center emission, X-ray luminosity, or BCG orientation with respect to the cluster position angle.
We consider the high radio frequency (15 GHz - 353 GHz) properties and variability of 35 Brightest Cluster Galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing u s to relate our results to the general population. We find that >6.0% of our parent sample (>15.1% if only cool-core clusters are considered) contain a radio-source at 150 GHz of at least 3mJy (~1x10^23 W/Hz at our median redshift of z~0.13). Furthermore, >3.4% of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to >8.5% if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week-month) time-scales although we see variations greater than 20% at 150 GHz over 6-month times-frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year-decade time-scale) variability, with average annual amplitude variations greater than 1% at 15 GHz being commonplace. There is a weak trend towards higher variability as the peak of the GPS-like component occurs at higher frequency. We demonstrate the complexity that is seen in the radio spectra of BCGs and discuss the potentially significant implications of these high-peaking components for Sunyaev-Zeldovich cluster searches.
102 - G. Giovannini , E. Liuzzo , 2008
We present new VLBI observations of Brightest Cluster Galaxies in eight nearby Abell clusters. These data show a possible difference between Brightest Cluster Galaxies in cool core clusters (two-sided pc scale jets) and in non cool core clusters (one -sided pc scale jets). We suggest that this difference could be due to the jet interaction with the surrounding medium. More data are necessary to discuss if pc-scale properties of Brightest Cluster Galaxies are influenced by their peculiar morphology and position in the center of rich clusters of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا