ﻻ يوجد ملخص باللغة العربية
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elusive. Based on previous radio/TeV correlation events, the unresolved jet base (radio core) and the peculiar knot HST-1 at >120 pc from the nucleus are proposed as candidate site(s) of gamma-ray production. Here we report our intensive, high-resolution radio monitoring observations of the M87 jet with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012. During this period, an elevated level of the M87 flux is reported at TeV with VERITAS. We detected a remarkable flux increase in the radio core with VERA at 22/43 GHz coincident with the VHE activity. Meanwhile, HST-1 remained quiescent in terms of its flux density and structure at radio. These results strongly suggest that the TeV gamma-ray activity in 2012 originates in the jet base within 0.03 pc (projected) from the central supermassive black hole.
We report our intensive radio monitoring observations of the jet in M87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray l
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elus
We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties
We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase
M87 is one of the closest (z=0.00436) extragalactic sources emitting at very-high-energies (VHE, E > 100 GeV). The aim of this work is to locate the region of the VHE gamma-ray emission and to describe the observed broadband spectral energy distribut