ترغب بنشر مسار تعليمي؟ اضغط هنا

It has been recently found that the characteristic photometric parameters of antitruncated discs in S0 galaxies follow tight scaling relations. We investigate if similar scaling relations are satisfied by galaxies of other morphological types. We hav e analysed the trends in several photometric planes relating the characteristic surface brightness and scalelengths of the breaks and the inner and outer discs of local antitruncated S0-Scd galaxies, using published data and fits performed to the surface brightness profiles of two samples of Type-III galaxies in the R and Spitzer 3.6 microns bands. We have performed linear fits to the correlations followed by different galaxy types in each plane, as well as several statistical tests to determine their significance. We have found that: 1) the antitruncated discs of all galaxy types from Sa to Scd obey tight scaling relations both in R and 3.6 microns, as observed in S0s; 2) the majority of these correlations are significant accounting for the numbers of the available data samples; 3) the trends are clearly linear when the characteristic scalelengths are plotted on a logarithmic scale; and 4) the correlations relating the characteristic surface brightnesses of the inner and outer discs and the breaks with the various characteristic scalelengths significantly improve when the latter are normalized to the optical radius of the galaxy. The results suggest that the scaling relations of Type-III discs are independent of the morphological type and the presence (or absence) of bars within the observational uncertainties of the available datasets, although larger and deeper samples are required to confirm this. The tight structural coupling implied by these scaling relations impose strong constraints on the mechanisms proposed for explaining the formation of antitruncated stellar discs in the galaxies across the whole Hubble Sequence (Abridged).
K-band galaxy number counts (GNCs) exhibit a slope change at K~17.5 mag not present in optical bands. To unveil the nature of this feature, we have derived the contribution of different galaxy types to the total K-band GNCs at 0.3<z<1.5 by redshift b ins and compared the results with expectations from several galaxy evolutionary models. We show that the slope change is caused by a sudden swap of the galaxy population that numerically dominates the total GNCs (from quiescent E-S0s at K<17.5 mag to blue star-forming discs at fainter magnitudes), and that it is associated with a flattening of the contribution of the E-S0s at 0.6<z<1 to the total GNCs. We confirm previous studies showing that models in which the bulk of massive E-S0s have evolved passively since z>2 cannot predict the slope change, whereas those imposing a relatively late assembly on them (z<1.5) can reproduce it. The K-band GNCs by redshift bins and morphological types point to a progressively definitive build-up of ~50% of this galaxy population at 0.8<z<1.5, which can be explained only through the major mergers reported by observations. We conclude that the slope change in total K-band GNCs is a vestige of the definitive assembly of a substantial fraction of present-day massive E-S0s at 0.8<z<1.5.
Galaxy mergers are considered as questionable mechanisms for the evolution of lenticular galaxies (S0s), on the basis that even minor ones induce structural changes that are difficult to reconcile with the strong bulge-disk coupling observed in the p hotometric scaling relations of S0s. We check if the evolution induced onto S0s by dry intermediate and minor mergers can reproduce their photometric scaling relations, analysing the bulge-disk decompositions of the merger simulations presented in Eliche-Moral et al. (2012). The mergers induce an evolution in the photometric planes compatible with the data of S0s, even in those ones indicating a strong bulge-disk coupling. The mergers drive the formation of the observed photometric relation in some cases, whereas they induce a slight dispersion compatible with data in others. Therefore, this evolutionary mechanism tends to preserve these scaling relations. In those photometric planes where the morphological types segregate, the mergers always induce evolution towards the region populated by S0s. The structural coupling of the bulge and the disk is preserved or reinforced because the mergers trigger internal secular processes in the primary disk that induce significant bulge growth, even although these models do not induce bars. Intermediate and minor mergers can thus be considered as plausible mechanisms for the evolution of S0s attending to their photometric scaling relations, as they can preserve and even strengthen any pre-existing structural bulge-disk coupling, triggering significant internal secular evolution (even in the absence of bars or dissipational effects). This means that it may be difficult to isolate the effects of pure internal secular evolution from those of the merger-driven one in present-day early-type disks (abridged).
Recent studies have argued that galaxy mergers are not important drivers for the evolution of S0s, on the basis that mergers cannot preserve the coupling between the bulge and disk scale-lengths observed in these galaxies and the lack of correlation of their ratio with the S0 Hubble type. We investigate whether the remnants resulting from collision-less N-body simulations of intermediate and minor mergers onto S0 galaxies evolve fulfilling global structural relations observed between the bulges and disks of these galaxies. Different initial bulge-to-disk ratios of the primary S0 have been considered, as well as different satellite densities, mass ratios, and orbits of the encounter. We have analysed the final morphology of the remnants in images simulating the typical observing conditions of S0 surveys. We derive bulge+disk decompositions of the final remnants to compare their global bulge-to-disk structure with observations. We show that all remnants present undisturbed S0 morphologies according to the prescriptions of specialized surveys. The dry intermediate and minor mergers induce noticeable bulge growth (S0c --> S0b and S0b --> S0a), but affect negligibly to the bulge and disk scale-lengths. Therefore, if a coupling between these two components exists prior to the merger, the encounter does not break this coupling. This fact provides a simple explanation for the lack of correlation between the ratio of bulge and disk scale-lengths and the S0 Hubble type reported by observations. These models prove that dry intermediate and minor mergers can induce global structural evolution within the sequence of S0 Hubble types compatible with observations, meaning that these processes should not be discarded from the evolutionary scenarios of S0s just on the basis of the strong coupling observed between the bulge and disk scale-lengths in these galaxies (abridged).
Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also played an essential role in it. The bulk of this assembly took place at 0.7<z<1, being nearly frozen at z<~0.7 due to the negligible number of major mergers occurred per existing mETG since then. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.
Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massiv e galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا