ترغب بنشر مسار تعليمي؟ اضغط هنا

365 - M. Bzowski 2012
Neutral Interstellar Helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. It provides some of the best information on the characteristics of the interstellar gas in the Loc al Interstellar Cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominated by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly-established flow direction is ecliptic longitude 79.2 deg, latitude -5.1 deg, the velocity is sim 22.8 km/s, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.
73 - S. Grzedzielski 2010
The brightest and most surprising feature in the first all-sky maps of Energetic Neutral Atoms (ENA) emissions (0.2-6 keV) produced by the Interstellar Boundary Explorer (IBEX) is an almost circular ribbon of a ~140{deg} opening angle, centered at (l ,b) = (33{deg}, 55{deg}), covering the part of the celestial sphere with the lowest column densities of the Local Interstellar Cloud (LIC). We propose a novel interpretation of the IBEX results based on the idea of ENA produced by charge-exchange between the neutral H atoms at the nearby edge of the LIC and the hot protons of the Local Bubble (LB). These ENAs can reach the Suns vicinity because of very low column density of the intervening LIC material. We show that a plane-parallel or slightly curved interface layer of contact between the LIC H atoms (n_H = 0.2 cm^-3, T = 6000-7000 K) and the LB protons (n_p = 0.005 cm^-3, T ~ 10^6 K), together with indirect contribution coming from multiply-scattered ENAs from the LB, may be able to explain both the shape of the ribbon and the observed intensities provided that the edge is < (500-2000) AU away, the LIC proton density is (correspondingly) < (0.04-0.01) cm^-3, and the LB contains ~1% of non-thermal protons over the IBEX energy range. If this model is correct, then IBEX, for the first time, has imaged in ENAs a celestial object from beyond the confines of the heliosphere and can directly diagnose the plasma conditions in the LB.
53 - M. Bzowski 2008
We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determinatio n of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 pm 0.04 cm-3.
With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-or der effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا