ترغب بنشر مسار تعليمي؟ اضغط هنا

The recently discovered coreshine effect can aid in exploring the core properties and in probing the large grain population of the ISM. We discuss the implications of the coreshine detected from the molecular cloud core L1506C in the Taurus filament for the history of the core and the existence of a primitive ISM component of large grains becoming visible in cores. The coreshine surface brightness of L1506C is determined from IRAC Spitzer images at 3.6 micron. We perform grain growth calculations to estimate the grain size distribution in model cores similar in gas density, radius, and turbulent velocity to L1506C. Scattered light intensities at 3.6 micron are calculated for a variety of MRN and grain growth distributions to compare with the observed coreshine. For a core with the overall physical properties of L1506C, no detectable coreshine is predicted for an MRN size distribution. Extending the distribution to grain radii of about 0.65 $mu$m allows to reproduce the observed surface brightness level in scattered light. Assuming the properties of L1506C to be preserved, models for the growth of grains in cores do not yield sufficient scattered light to account for the coreshine within the lifetime of the Taurus complex. Only increasing the core density and the turbulence amplifies the scattered light intensity to a level consistent with the observed coreshine brightness. The grains could be part of primitive omni-present large grain population becoming visible in the densest part of the ISM, could grow under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today.
The recent discovery of relaxor ferroelectricity and magnetoelectric effect in lightly doped cuprate material La_2CuO_{4+x} has provided a number of questions concerning its theoretical description. It has been argued using a Ginzburg-Landau free ene rgy approach that the magnetoelectric effect can be explained by the presence of bi-quadratic interaction terms in the free energy. Here, by using the same free energy functional, we study the variety of behavior which can emerge in the electric polarization under an external magnetic field. Subsequently, we discuss the role of Dzyaloshinskii-Moriya interaction in generating this magnetoelectric response. This work is particularly relevant for such relaxor systems where the material-dependent parameters would be affected by changes in e.g. chemical doping or cooling rate.
In a recent study Viskadourakis et al. discovered that extremely underdoped La_2CuO_(4+x) is a relaxor ferroelectric and a magnetoelectric material at low temperatures. It is further observed that the magnetoelectric response is anisotropic for diffe rent directions of electric polarization and applied magnetic field. By constructing an appropriate Landau theory, we show that a bi-quadratic magnetoelectric coupling can explain the experimentally observed polarization dependence on magnetic field. This coupling leads to several novel low-temperature effects including a feedback enhancement of the magnetization below the ferroelectric transition, and a predicted magnetocapacitive effect.
We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57 (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar In itial Mass Function (IMF) down to ~1 Msun in order to test whether the IMF in a massive metal-poor cluster is similar to that observed in nearby young clusters and the field in our Galaxy. We estimate the mean age of the cluster to be 3 Myr by combining our F160W photometry with previously obtained HST WFPC2 optical F555W and F814W band photometry and comparing the stellar locus in the color-magnitude diagram with main sequence and pre-main sequence isochrones. The color-magnitude diagrams show the presence of differential extinction and possibly an age spread of a few megayears. We convert the magnitudes into masses adopting both a single mean age of 3 Myr isochrone and a constant star formation history from 2 to 4 Myr. We derive the IMF after correcting for incompleteness due to crowding. The faintest stars detected have a mass of 0.5 Msun and the data are more than 50% complete outside a radius of 5 pc down to a mass limit of 1.1 Msun for 3 Myr old objects. We find an IMF of dN/dlog(M) M^(-1.20+-0.2) over the mass range 1.1--20 Msun only slightly shallower than a Salpeter IMF. In particular, we find no strong evidence for a flattening of the IMF down to 1.1 Msun at a distance of 5 pc from the center, in contrast to a flattening at 2 Msun at a radius of 2 pc, reported in a previous optical HST study. We examine several possible reasons for the different results. If the IMF determined here applies to the whole cluster, the cluster would be massive enough to remain bound and evolve into a relatively low-mass globular cluster.
103 - M. Granath , B. M. Andersen 2009
We study the electronic structure within a system of phase-decoupled one-dimensional superconductors coexisting with stripe spin and charge density wave order. This system has a nodal Fermi surface (Fermi arc) in the form of a hole pocket and an anti nodal pseudogap. The spectral function in the antinodes is approximately particle-hole symmetric contrary to the gapped regions just outside the pocket. We find that states at the Fermi energy are extended whereas states near the pseudogap energy have localization lengths as short as the inter-stripe spacing. We consider pairing which has either local d-wave or s-wave symmetry and find similar results in both cases, consistent with the pseudogap being an effect of local pair correlations. We suggest that this state is a stripe ordered caricature of the pseudogap phase in underdoped cuprates with coexisting spin-, charge-, and pair-density wave correlations. Lastly, we also model a superconducting state which 1) evolves smoothly from the pseudogap state, 2) has a signature subgap peak in the density of states, and 3) has the coherent pair density concentrated to the nodal region.
We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic an d inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond.
Spin noise spectroscopy with a single laser beam is demonstrated theoretically to provide a direct probe of the spatial correlations of cold fermionic gases. We show how the generic many-body phenomena of anti-bunching, pairing, antiferromagnetic, an d algebraic spin liquid correlations can be revealed by measuring the spin noise as a function of laser width, temperature, and frequency.
We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping pote ntial leads to the coexistence of magnetic and superfluid ordered phases with the normal phase. We study the intriguing shell structures arising from the competition between the magnetic and superfluid order as a function of the filling fraction. In certain cases antiferromagnetism induce superfluidity by charge redistributions. We furthermore demonstrate how these shell structures can be detected as distinct anti-bunching dips and pairing peaks in the density-density correlation function probed in expansion experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا