ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of the magnetoeletric effect in a lightly doped high-Tc cuprate

85   0   0.0 ( 0 )
 نشر من قبل Shantanu Mukherjee
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent study Viskadourakis et al. discovered that extremely underdoped La_2CuO_(4+x) is a relaxor ferroelectric and a magnetoelectric material at low temperatures. It is further observed that the magnetoelectric response is anisotropic for different directions of electric polarization and applied magnetic field. By constructing an appropriate Landau theory, we show that a bi-quadratic magnetoelectric coupling can explain the experimentally observed polarization dependence on magnetic field. This coupling leads to several novel low-temperature effects including a feedback enhancement of the magnetization below the ferroelectric transition, and a predicted magnetocapacitive effect.

قيم البحث

اقرأ أيضاً

Our recent study has revealed that the mixture of the dz2 orbital component into the Fermi surface suppresses Tc in the cuprates such as La2CuO4. We have also shown that applying hydrostatic pressure enhances Tc due to smaller mixing of the Cu4s comp onent. We call these the orbital distillation effect. In our previous study, the 4s orbital was taken into account through the hoppings in the dx2-y2 sector, but here we consider a model in which of the dx2-y2, dz2 and 4s orbitals are all considered explicitly. The present study reinforces our conclusion that smaller 4s hybridization further enhances Tc.
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamen- tal step toward this goal would be to identify the relative weight of the electr onic and phononic contributions to the overall frequency (Omega) dependent bosonic function, Pi(Omega). We perform optical spectroscopy on Bi2212 crystals with simultaneous time- and frequency-resolution; this technique allows us to disentangle the electronic and phononic contributions by their different temporal evolution. The strength of the interaction ({lambda}~1.1) with the electronic excitations and their spectral distribution fully account for the high critical temperature of the superconducting phase transition.
185 - P. Zhang , X.-L. Peng , T. Qian 2015
It is well known that superconductivity in Fe-based materials is favoured under tetragonal symmetry, whereas competing orders such as spin-density-wave (SDW) and nematic orders emerge or are reinforced upon breaking the fourfold (C4) symmetry. Accord ingly, suppression of orthorhombicity below the superconducting transition temperature (Tc) is found in underdoped compounds. Epitaxial film growth on selected substrates allows the design of crystal specific lattice distortions. Here we show that despite the breakdown of the C4 symmetry induced by a 5% difference in the lattice parameters, monolayers of FeSe grown by molecular beam epitaxy (MBE) on the (110) surface of SrTiO3 (STO) substrates [FeSe/STO(110)] exhibit a large nearly isotropic superconducting (SC) gap of 16 meV closing around 60 K. Our results on this new interfacial material, similar to those obtained previously on FeSe/STO(001), contradict the common belief that the C4 symmetry is essential for reaching high Tcs in Fe-based superconductors.
The race to obtain a higher critical temperature (Tc) in the superconducting cuprates has been virtually suspended since it was optimized under high pressure in a hole-doped trilayer cuprate. We report the anomalous increase in Tc under high pressure for the electron-doped infinite-layer cuprate Sr0.9La0.1CuO2 in the vicinity of the antiferromagnetic critical point. By the application of a pressure of 15 GPa, Tc increases to 45 K, which is the highest temperature among the electron-doped cuprates and ensures unconventional superconductivity. We describe the electronic phase diagram of Sr1-xLaxCuO2 to discuss the relation between the antiferromagnetic order and superconductivity.
The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two know n families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا