ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of scientific interest. While general quantum simulation algorithms likely require error-corrected qubits, there may be applications of scientific intere st prior to the practical implementation of quantum error correction. The variational quantum eigensolver (VQE) is a promising approach to find energy eigenvalues on noisy quantum computers. Lattice models are of broad interest for use on near-term quantum hardware due to the sparsity of the number of Hamiltonian terms and the possibility of matching the lattice geometry to the hardware geometry. Here, we consider the Kitaev spin model on a hardware-native square-octagon qubit connectivity map, and examine the possibility of efficiently probing its rich phase diagram with VQE approaches. By benchmarking different choices of variational ansatz states and classical optimizers, we illustrate the advantage of a mixed optimization approach using the Hamiltonian variational ansatz (HVA). We further demonstrate the implementation of an HVA circuit on Rigettis Aspen-9 chip with error mitigation.
We discuss the implementation of quantum algorithms for lattice $Phi^4$ theory on circuit quantum electrodynamics (cQED) system. The field is represented on qudits in a discretized field amplitude basis. The main advantage of qudit systems is that it s multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates. Considering the set of universal gates formed by the single-qudit phase gate and the displacement gate, we address initial state preparation and single-qudit gate synthesis with variational methods.
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out su ch a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over $D_N$, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in $n=log N$. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of $D_4$. The fidelity of all $D_4$ gates was found to exceed $80%$.
In order to assess whether quantum resources can provide an advantage over classical computation, it is necessary to characterize and benchmark the non-classical properties of quantum algorithms in a practical manner. In this paper, we show that usin g measurements in no more than 3 out of the possible $3^N$ bases, one can not only reconstruct the single-qubit reduced density matrices and measure the ability to create coherent superpositions, but also possibly verify entanglement across all $N$ qubits participating in the algorithm. We introduce a family of generalized Bell-type observables for which we establish an upper bound to the expectation values in fully separable states by proving a generalization of the Cauchy-Schwarz inequality, which may serve of independent interest. We demonstrate that a subset of such observables can serve as entanglement witnesses for QAOA-MaxCut states, and further argue that they are especially well tailored for this purpose by defining and computing an entanglement potency metric on witnesses. A subset of these observables also certify, in a weaker sense, the entanglement in GHZ states, which share the $mathbb{Z}_2$ symmetry of QAOA-MaxCut. The construction of such witnesses follows directly from the cost Hamiltonian to be optimized, and not through the standard technique of using the projector of the state being certified. It may thus provide insights to construct similar witnesses for other variational algorithms prevalent in the NISQ era. We demonstrate our ideas with proof-of-concept experiments on the Rigetti Aspen-9 chip for ansatze containing up to 24 qubits.
171 - M. Sohaib Alam 2019
Reinforcement learning has witnessed recent applications to a variety of tasks in quantum programming. The underlying assumption is that those tasks could be modeled as Markov Decision Processes (MDPs). Here, we investigate the feasibility of this as sumption by exploring its consequences for two of the simplest tasks in quantum programming: state preparation and gate compilation. By forming discrete MDPs, focusing exclusively on the single-qubit case, we solve for the optimal policy exactly through policy iteration. We find optimal paths that correspond to the shortest possible sequence of gates to prepare a state, or compile a gate, up to some target accuracy. As an example, we find sequences of H and T gates with length as small as 11 producing ~99% fidelity for states of the form (HT)^{n} |0> with values as large as n=10^{10}. This work provides strong evidence that reinforcement learning can be used for optimal state preparation and gate compilation for larger qubit spaces.
We develop a general method for incentive-based programming of hybrid quantum-classical computing systems using reinforcement learning, and apply this to solve combinatorial optimization problems on both simulated and real gate-based quantum computer s. Relative to a set of randomly generated problem instances, agents trained through reinforcement learning techniques are capable of producing short quantum programs which generate high quality solutions on both types of quantum resources. We observe generalization to problems outside of the training set, as well as generalization from the simulated quantum resource to the physical quantum resource.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا