ﻻ يوجد ملخص باللغة العربية
We discuss the implementation of quantum algorithms for lattice $Phi^4$ theory on circuit quantum electrodynamics (cQED) system. The field is represented on qudits in a discretized field amplitude basis. The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates. Considering the set of universal gates formed by the single-qudit phase gate and the displacement gate, we address initial state preparation and single-qudit gate synthesis with variational methods.
Quantum mechanical properties like entanglement, discord and coherence act as fundamental resources in various quantum information processing tasks. Consequently, generating more resources from a few, typically termed as broadcasting is a task of utm
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out su
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alp
We examine, in correlated mixed states of qudit-qubit systems, the set of all conditional qubit states that can be reached after local measurements at the qudit based on rank-1 projectors. While for a similar measurement at the qubit, the conditional
A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described by a semigroup of single qubit quantum channels ${T_t}$ specified by a generator $mathcal{L}$. This algorithm requires only $mathcal{O}big((||ma