ﻻ يوجد ملخص باللغة العربية
Quantum spin systems may offer the first opportunities for beyond-classical quantum computations of scientific interest. While general quantum simulation algorithms likely require error-corrected qubits, there may be applications of scientific interest prior to the practical implementation of quantum error correction. The variational quantum eigensolver (VQE) is a promising approach to find energy eigenvalues on noisy quantum computers. Lattice models are of broad interest for use on near-term quantum hardware due to the sparsity of the number of Hamiltonian terms and the possibility of matching the lattice geometry to the hardware geometry. Here, we consider the Kitaev spin model on a hardware-native square-octagon qubit connectivity map, and examine the possibility of efficiently probing its rich phase diagram with VQE approaches. By benchmarking different choices of variational ansatz states and classical optimizers, we illustrate the advantage of a mixed optimization approach using the Hamiltonian variational ansatz (HVA). We further demonstrate the implementation of an HVA circuit on Rigettis Aspen-9 chip with error mitigation.
By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational principle. In practice, the prepared quantum state is indirectly assesse
Variational quantum eigensolver (VQE) optimizes parameterized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage up
Variational quantum eigensolver(VQE) typically minimizes energy with hybrid quantum-classical optimization, which aims to find the ground state. Here, we propose a VQE by minimizing energy variance, which is called as variance-VQE(VVQE). The VVQE can
The discovery of superconductivity in twisted bilayer graphene has triggered a resurgence of interest in flat-band superconductivity. Here, we investigate the square-octagon lattice, which also exhibits two perfectly flat bands when next-nearest neig
Quantum-enhanced computing methods are promising candidates to solve currently intractable problems. We consider here a variational quantum eigensolver (VQE), that delegates costly state preparations and measurements to quantum hardware, while classi