ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the phase diagram and critical properties of quantum Ising chains with long-range ferromagnetic interactions decaying in a power-law fashion with exponent $alpha$, in regimes of direct interest for current trapped ion experiments. Using larg e-scale path integral Monte Carlo simulations, we investigate both the ground-state and the nonzero-temperature regimes. We identify the phase boundary of the ferromagnetic phase and obtain accurate estimates for the ferromagnetic-paramagnetic transition temperatures. We further determine the critical exponents of the respective transitions. Our results are in agreement with existing predictions for interaction exponents $alpha > 1$ up to small deviations in some critical exponents. We also address the elusive regime $alpha < 1$, where we find that the universality class of both the ground-state and nonzero-temperature transition is consistent with the mean-field limit at $alpha = 0$. Our work not only contributes to the understanding of the equilibrium properties of long-range interacting quantum Ising models, but can also be important for addressing fundamental dynamical aspects, such as issues concerning the open question of thermalization in such models.
We consider a lattice version of the Bisognano-Wichmann (BW) modular Hamiltonian as an ansatz for the bipartite entanglement Hamiltonian of the quantum critical chains. Using numerically unbiased methods, we check the accuracy of the BW-ansatz by bot h comparing the BW Renyi entropy to the exact results, and by investigating the size scaling of the norm distance between the exact reduced density matrix and the BW one. Our study encompasses a variety of models, scanning different universality classes, including transverse field Ising, Potts and XXZ chains. We show that the Renyi entropies obtained via the BW ansatz properly describe the scaling properties predicted by conformal field theory. Remarkably, the BW Renyi entropies faithfully capture also the corrections to the conformal field theory scaling associated to the energy density operator. In addition, we show that the norm distance between the discretized BW density matrix and the exact one asymptotically goes to zero with the system size: this indicates that the BW-ansatz can be also employed to predict properties of the eigenvectors of the reduced density matrices, and is thus potentially applicable to other entanglement-related quantities such as negativity.
114 - E. Rico , M. Dalmonte , P. Zoller 2018
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S=3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.
105 - M. Dalmonte , S. Montangero 2016
The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behavior of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analyzing the symmetry properties of Hamiltonian and states: the most striking example are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realization of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.
62 - M. Dalmonte , W. Lechner , Zi Cai 2015
We investigate the quantum phases of hard-core bosonic atoms in an extended Hubbard model where particles interact via soft-shoulder potentials in one dimension. Using a combination of field-theoretical methods and strong-coupling perturbation theory , we demonstrate that the low-energy phase can be a conformal cluster Luttinger liquid (CLL) phase with central charge $c=1$, where the microscopic degrees of freedom correspond to mesoscopic ensembles of particles. Using numerical density-matrix-renormalization-group methods, we demonstrate that the CLL phase, first predicted in [Phys. Rev. Lett. 111, 165302 (2013)], is separated from a conventional Tomonaga-Luttinger liquid by an exotic critical point with central charge $c=3/2$. The latter is expression of an emergent conformal supersymmetry, which is not present in the original Hamiltonian. We discuss the observability of the CLL phase in realistic experimental settings with weakly-dressed Rydberg atoms confined to optical lattices. Using quantum Monte-Carlo simulations, we show that the typical features of CLLs are stable up to comparatively high temperatures. Using exact diagonalizations and quantum trajectory methods, we provide a protocol for adiabatic state preparation as well as quantitative estimates on the effects of particle losses.
We propose a novel platform for quantum many body simulations of dipolar spin models using current circuit QED technology. Our basic building blocks are 3D Transmon qubits where we use the naturally occurring dipolar interactions to realize interacti ng spin systems. This opens the way toward the realization of a broad class of tunable spin models in both two- and one-dimensional geometries. We illustrate the potential offered by these systems in the context of dimerized Majumdar-Ghosh-type phases, archetypical examples of quantum magnetism, showing how such phases are robust against disorder and decoherence, and could be observed within state-of-the-art experiments.
We discuss how to locate critical points in the Berezinskii-Kosterlitz-Thouless (BKT) universality class by means of gap-scaling analyses. While accurately determining such points using gap extrapolation procedures is usually challenging and inaccura te due to the exponentially small value of the gap in the vicinity of the critical point, we show that a generic gap-scaling analysis, including the effects of logarithmic corrections, provides very accurate estimates of BKT transition points in a variety of spin and fermionic models. As a first example, we show how the scaling procedure, combined with density-matrix-renormalization-group simulations, performs extremely well in a non-integrable spin-$3/2$ XXZ model, which is known to exhibit strong finite-size effects. We then analyze the extended Hubbard model, whose BKT transition has been debated, finding results that are consistent with previous studies based on the scaling of the Luttinger-liquid parameter. Finally, we investigate an anisotropic extended Hubbard model, for which we present the first estimates of the BKT transition line based on large-scale density-matrix-renormalization-group simulations. Our work demonstrates how gap-scaling analyses can help to locate accurately and efficiently BKT critical points, without relying on model-dependent scaling assumptions.
129 - E. Rico , T. Pichler , M. Dalmonte 2013
We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy to cold atom physics, as they can be used in col d-atoms in optical lattices to study lattice gauge theories. In this framework, we characterize the phase diagram of a (1+1)-d quantum link version of the Schwinger model in an external classical background electric field: the quantum phase transition from a charge and parity ordered phase with non-zero electric flux to a disordered one with a net zero electric flux configuration is described by the Ising universality class.
We investigate magnetic properties of strongly interacting bosonic mixtures confined in one dimensional geometries, focusing on recently realized Rb-K gases with tunable interspecies interactions. By combining analytical perturbation theory results w ith density-matrix-renormalization group calculations, we provide quantitative estimates of the ground state phase diagram as a function of the relevant microscopic quantities, identifying the more favorable experimental regimes in order to access the various magnetic phases. Finally, we qualitatively discuss the observability of such phases in realistic setups when finite temperature effects have to be considered.
Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chir al symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا