ترغب بنشر مسار تعليمي؟ اضغط هنا

Dipolar Spin Models with Arrays of Superconducting Qubits

94   0   0.0 ( 0 )
 نشر من قبل Marcello Dalmonte
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel platform for quantum many body simulations of dipolar spin models using current circuit QED technology. Our basic building blocks are 3D Transmon qubits where we use the naturally occurring dipolar interactions to realize interacting spin systems. This opens the way toward the realization of a broad class of tunable spin models in both two- and one-dimensional geometries. We illustrate the potential offered by these systems in the context of dimerized Majumdar-Ghosh-type phases, archetypical examples of quantum magnetism, showing how such phases are robust against disorder and decoherence, and could be observed within state-of-the-art experiments.

قيم البحث

اقرأ أيضاً

Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase. However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a m easurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information about the system become accessible, enabling the experimental determination of a complete phase diagram including environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number of bands.
121 - Yueyin Qiu , Wei Xiong , Lin Tian 2014
We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively couple d via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave ph otons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
83 - Wuxin Liu , Wei Feng , Wenhui Ren 2020
Superconducting qubits provide a competitive platform for quantum simulation of complex dynamics that lies at the heart of quantum many-body systems, because of the flexibility and scalability afforded by the nature of microfabrication. However, in a multiqubit device, the physical form of couplings between qubits is either an electric (capacitor) or magnetic field (inductor), and the associated quadratic field energy determines that only two-body interaction in the Hamiltonian can be directly realized. Here we propose and experimentally synthesize the three-body spin-chirality interaction in a superconducting circuit based on Floquet engineering. By periodically modulating the resonant frequencies of the qubits connected with each other via capacitors, we can dynamically turn on and off qubit-qubit couplings, and further create chiral flows of the excitations in the three-qubit circular loop. Our result is a step toward engineering dynamical and many-body interactions in multiqubit superconducting devices, which potentially expands the degree of freedom in quantum simulation tasks.
We implement an iterative quantum state transfer exploiting the natural dipolar couplings in a spin chain of a liquid crystal NMR system. During each iteration a finite part of the amplitude of the state is transferred and by applying an external ope ration on only the last two spins the transferred state is made to accumulate on the spin at the end point. The transfer fidelity reaches one asymptotically through increasing the number of iterations. We also implement the inverted version of the scheme which can transfer an arbitrary state from the end point to any other position of the chain and entangle any pair of spins in the chain, acting as a full quantum data bus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا