ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice gauge theories simulations in the quantum information era

106   0   0.0 ( 0 )
 نشر من قبل Marcello Dalmonte
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behavior of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analyzing the symmetry properties of Hamiltonian and states: the most striking example are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realization of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.



قيم البحث

اقرأ أيضاً

Gauge theories are the cornerstone of our understanding of fundamental interactions among particles. Their properties are often probed in dynamical experiments, such as those performed at ion colliders and high-intensity laser facilities. Describing the evolution of these strongly coupled systems is a formidable challenge for classical computers, and represents one of the key open quests for quantum simulation approaches to particle physics phenomena. Here, we show how recent experiments done on Rydberg atom chains naturally realize the real-time dynamics of a lattice gauge theory at system sizes at the boundary of classical computational methods. We prove that the constrained Hamiltonian dynamics induced by strong Rydberg interactions maps exactly onto the one of a $U(1)$ lattice gauge theory. Building on this correspondence, we show that the recently observed anomalously slow dynamics corresponds to a string-inversion mechanism, reminiscent of the string-breaking typically observed in gauge theories. This underlies the generality of this slow dynamics, which we illustrate in the context of one-dimensional quantum electrodynamics on the lattice. Within the same platform, we propose a set of experiments that generically show long-lived oscillations, including the evolution of particle-antiparticle pairs. Our work shows that the state of the art for quantum simulation of lattice gauge theories is at 51 qubits, and connects the recently observed slow dynamics in atomic systems to archetypal phenomena in particle physics
The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices require gauge invariance to be enfo rced for faithful quantum simulation of gauge-theory physics. This poses major experimental challenges, in large part due to the complexity of the gauge-symmetry generators. Here, we show that gauge invariance can be reliably stabilized by employing simplified textit{local pseudo generators} designed such that within the physical sector they act identically to the actual local generator. Dynamically, they give rise to emergent exact gauge theories up to timescales polynomial and even exponential in the protection strength. This obviates the need for implementing often complex multi-body full gauge symmetries, thereby further reducing experimental overhead in physical realizations. We showcase our method in the $mathbb{Z}_2$ lattice gauge theory, and discuss experimental considerations for its realization in modern ultracold-atom setups.
Artificial magnetic fields and spin-orbit couplings have been recently generated in ultracold gases in view of realizing topological states of matter and frustrated magnetism in a highly-controllable environment. Despite being dynamically tunable, su ch artificial gauge fields are genuinely classical and exhibit no back-action from the neutral particles. Here we go beyond this paradigm, and demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices. Specifically, we propose a protocol by which atoms of one species carry a magnetic flux felt by another species, hence realizing an instance of flux-attachment. This is obtained by combining coherent lattice modulation techniques with strong Hubbard interactions. We demonstrate how this setting can be arranged so as to implement lattice models displaying a local Z2 gauge symmetry, both in one and two dimensions. We also provide a detailed analysis of a ladder toy model, which features a global Z2 symmetry, and reveal the phase transitions that occur both in the matter and gauge sectors. Mastering flux-attachment in optical lattices envisages a new route towards the realization of strongly-correlated systems with properties dictated by an interplay of dynamical matter and gauge fields.
Gauge theories form the foundation of modern physics, with applications ranging from elementary particle physics and early-universe cosmology to condensed matter systems. We demonstrate emergent irreversible behavior, such as the approach to thermal equilibrium, by quantum simulating the fundamental unitary dynamics of a U(1) symmetric gauge field theory. While this is in general beyond the capabilities of classical computers, it is made possible through the experimental implementation of a large-scale cold atomic system in an optical lattice. The highly constrained gauge theory dynamics is encoded in a one-dimensional Bose--Hubbard simulator, which couples fermionic matter fields through dynamical gauge fields. We investigate global quantum quenches and the equilibration to a steady state well approximated by a thermal ensemble. Our work establishes a new realm for the investigation of elusive phenomena, such as Schwinger pair production and string-breaking, and paves the way for more complex higher-dimensional gauge theories on quantum synthetic matter devices.
Quantum simulators have the exciting prospect of giving access to real-time dynamics of lattice gauge theories, in particular in regimes that are difficult to compute on classical computers. Future progress towards scalable quantum simulation of latt ice gauge theories, however, hinges crucially on the efficient use of experimental resources. As we argue in this work, due to the fundamental non-uniqueness of discretizing the relativistic Dirac Hamiltonian, the lattice representation of gauge theories allows for an optimization that up to now has been left unexplored. We exemplify our discussion with lattice quantum electrodynamics in two-dimensional space-time, where we show that the formulation through Wilson fermions provides several advantages over the previously considered staggered fermions. Notably, it enables a strongly simplified optical lattice setup and it reduces the number of degrees of freedom required to simulate dynamical gauge fields. Exploiting the optimal representation, we propose an experiment based on a mixture of ultracold atoms trapped in a tilted optical lattice. Using numerical benchmark simulations, we demonstrate that a state-of-the-art quantum simulator may access the Schwinger mechanism and map out its non-perturbative onset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا