ترغب بنشر مسار تعليمي؟ اضغط هنا

In a series of recent papers Kallosh, Linde, and collaborators have provided a unified description of single-field inflation with several types of potentials, ranging from power law to supergravity, in terms of just one parameter $alpha$. These so-ca lled $alpha$-attractors predict a spectral index $n_{s}$ and a tensor-to-scalar ratio $r$, which are fully compatible with the latest Planck data. The only common feature of all $alpha$-attractors is a non-canonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a non-canonical scalar kinetic energy, we explore the case of non-analytic potentials. We find the functional form that corresponds to quasi-scale invariant gravitational models in the Jordan frame, characterised by a universal relation between $r$ and $n_{s}$ that fits the observational data but is clearly distinct from the one of the $alpha$-attractors. It is known that the breaking of the exact classical scale-invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of non-analytic potentials in the non-canonical Einstein frame that are physically equivalent to a class of models in the Jordan frame, with scale-invariance softly broken by one-loop quantum corrections.
We study topological black hole solutions of the simplest quadratic gravity action and we find that two classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordstrom solution, while the second is asymptotically de Sitter or anti-de Sitter. In both classes, the geometry of the horizon can be spherical, toroidal or hyperbolic. We focus in particular on the thermodynamical properties of the asymptotically anti-de Sitter solutions and we compute the entropy and the internal energy with Euclidean methods. We find that the entropy is positive-definite for all horizon geometries and this allows to formulate a consistent generalized first law of black hole thermodynamics, which keeps in account the presence of two arbitrary parameters in the solution. The two-dimensional thermodynamical state space is fully characterized by the underlying scale invariance of the action and it has the structure of a projective space. We find a kind of duality between black holes and other objects with the same entropy in the state space. We briefly discuss the extension of our results to more general quadratic actions.
Thanks to the Planck Collaboration, we know the value of the scalar spectral index of primordial fluctuations with unprecedented precision. In addition, the joint analysis of the data from Planck, BICEP2, and KEK has further constrained the value of the tensor-to-scalar ratio $r$ so that chaotic inflationary scenarios seem to be disfavoured. Inspired by these results, we look for a model that yields a value of $r$ that is larger than the one predicted by the Starobinsky model but is still within the new constraints. We show that purely quadratic, renormalizable, and scale-invariant gravity, implemented by loop-corrections, satisfies these requirements.
The BICEP2 collaboration has recently released data showing that the scalar-to-tensor ratio $r$ is much larger than expected. The immediate consequence, in the context of $f(R)$ gravity, is that the Starobinsky model of inflation is ruled out since i t predicts a value of $r$ much smaller than what is observed. Of course, the BICEP2 data need verification, especially from Planck with which there is some tension, therefore any conclusion seems premature. However, it is interesting to ask what would be the functional form of $f(R)$ in the case when the value of $r$ is different from the one predicted by the Starobinsky model. In this paper, we show how to determine the form of $f(R)$, once the slow-roll parameters are known with some accuracy. The striking result is that, for given values of the scalar spectral index $n_{S}$ and $r$, the effective Lagrangian has the form $f(R)=R^{zeta}$, where $zeta=2-varepsilon$ and $|varepsilon|ll 1$. Therefore, it appears that the inflationary phase of the Universe is best described by a $R^{2}$ theory, with a small deviation that, as we show, can be obtained by quantum corrections.
275 - Luciano Vanzo 2014
We suggest the possibility that the mysterious dark energy component driving the acceleration of the Universe is the leading term, in the de Sitter temperature, of the free energy density of space-time seen as a quantum gravity coherent state of the gravitational field. The corresponding field theory classically has positive pressure, and can be considered as living on the Hubble horizon, or, alternatively, within the non compact part of the Robertson-Walker metric, both manifolds being characterized by the same scale and degrees of freedom. The equation of state is then recovered via the conformal anomaly. No such interpretation seems to be available for negative {Lambda}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا