ﻻ يوجد ملخص باللغة العربية
The BICEP2 collaboration has recently released data showing that the scalar-to-tensor ratio $r$ is much larger than expected. The immediate consequence, in the context of $f(R)$ gravity, is that the Starobinsky model of inflation is ruled out since it predicts a value of $r$ much smaller than what is observed. Of course, the BICEP2 data need verification, especially from Planck with which there is some tension, therefore any conclusion seems premature. However, it is interesting to ask what would be the functional form of $f(R)$ in the case when the value of $r$ is different from the one predicted by the Starobinsky model. In this paper, we show how to determine the form of $f(R)$, once the slow-roll parameters are known with some accuracy. The striking result is that, for given values of the scalar spectral index $n_{S}$ and $r$, the effective Lagrangian has the form $f(R)=R^{zeta}$, where $zeta=2-varepsilon$ and $|varepsilon|ll 1$. Therefore, it appears that the inflationary phase of the Universe is best described by a $R^{2}$ theory, with a small deviation that, as we show, can be obtained by quantum corrections.
Recent cosmological observations are in good agreement with the scalar spectral index $n_s$ with $n_s-1simeq -2/N$, where $N$ is the number of e-foldings. In the previous work, the reconstruction of the inflaton potential for a given $n_s$ was studie
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu
A generic feature of viable exponential $F(R)$-gravity is investigated. An additional modification to stabilize the effective dark energy oscillations during matter era is proposed and applied to two viable models. An analysis on the future evolution
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
We investigate the qualitative evolution of (D+1)-dimensional cosmological models in f(R) gravity for the general case of the function f(R). The analysis is specified for various examples, including the (D+1)-dimensional generalization of the Starobi