ﻻ يوجد ملخص باللغة العربية
We suggest the possibility that the mysterious dark energy component driving the acceleration of the Universe is the leading term, in the de Sitter temperature, of the free energy density of space-time seen as a quantum gravity coherent state of the gravitational field. The corresponding field theory classically has positive pressure, and can be considered as living on the Hubble horizon, or, alternatively, within the non compact part of the Robertson-Walker metric, both manifolds being characterized by the same scale and degrees of freedom. The equation of state is then recovered via the conformal anomaly. No such interpretation seems to be available for negative {Lambda}.
It is often said that asymmetric dark matter is light compared to typical weakly interacting massive particles. Here we point out a simple scheme with a neutrino portal and $mathcal{O}(60 text{ GeV})$ asymmetric dark matter which may be added to any
Under a weak assumption of the existence of a geodesic null congruence, we present the general solution of the Einstein field equations in three dimensions with any value of the cosmological constant, admitting an aligned null matter field, and also
We show that if Dark Matter is made up of light bosons, they form a Bose-Einstein condensate in the early Universe. This in turn naturally induces a Dark Energy of approximately equal density and exerting negative pressure.This explains the so-called coincidence problem.
Progress on the problem whether the Hilbert schemes of locally Cohen-Macaulay curves in projective 3 space are connected has been hampered by the lack of an answer to a question that was raised by Robin Hartshorne in his paper On the connectedness of
In a previous effort [arXiv:1708.05492] we have created a framework that explains why topological structures naturally arise within a scientific theory; namely, they capture the requirements of experimental verification. This is particularly interest