ترغب بنشر مسار تعليمي؟ اضغط هنا

We define a new notion of fiber-wise linear differential operator on the total space of a vector bundle $E$. Our main result is that fiber-wise linear differential operators on $E$ are equivalent to (polynomial) derivations of an appropriate line bun dle over $E^ast$. We believe this might represent a first step towards a definition of multiplicative (resp. infinitesimally multiplicative) differential operators on a Lie groupoid (resp. a Lie algebroid). We also discuss the linearization of a differential operator around a submanifold.
We define and study multiplicative connections in the tangent bundle of a Lie groupoid. Multiplicative connections are linear connections satisfying an appropriate compatibility with the groupoid structure. Our definition is natural in the sense that a linear connection on a Lie groupoid is multiplicative if and only if its torsion is a multiplicative tensor in the sense of Bursztyn-Drummond [4] and its geodesic spray is a multiplicative vector field. We identify the obstruction to the existence of a multiplicative connection. We also discuss the infinitesimal version of multiplicative connections in the tangent bundle, that we call infinitesimally multiplicative (IM) connections and we prove an integration theorem for IM connections. Finally, we present a few toy examples. Along the way, we discuss fiber-wise linear connections in the tangent bundle of the total space of a vector bundle.
The theory of $G$-structures provides us with a unified framework for a large class of geometric structures, including symplectic, complex and Riemannian structures, as well as foliations and many others. Surprisingly, contact geometry - the odd-dime nsional counterpart of symplectic geometry - does not fit naturally into this picture. In this paper, we introduce the notion of a homogeneous $G$-structure, which encompasses contact structures, as well as some other interesting examples that appear in the literature.
VB-groupoids are vector bundles in the category of Lie groupoids. They encompass several classical objects, including Lie group representations and 2-vector spaces. Moreover, they provide geometric pictures for 2-term representations up to homotopy o f Lie groupoids. We attach to every VB-groupoid a cochain complex controlling its deformations and discuss its fundamental features, such as Morita invariance and a van Est theorem. Several examples and applications are given.
We propose a definition of a higher version of the omni-Lie algebroid and study its isotropic and involutive subbundles. Our higher omni-Lie algebroid is to (multi)contact and related geometries what the higher generalized tangent bundle of Zambon an d Bi/Sheng is to (multi)symplectic and related geometries.
A VB-algebroid is a vector bundle object in the category of Lie algebroids. We attach to every VB-algebroid a differential graded Lie algebra and we show that it controls deformations of the VB-algebroid structure. Several examples and applications a re discussed. This is the first in a series of papers devoted to deformations of vector bundles and related structures over differentiable stacks.
Let $A Rightarrow M$ be a Lie algebroid. In this short note, we prove that a pull-back of $A$ along a fibration with homologically $k$-connected fibers, shares the same deformation cohomology of $A$ up to degree $k$.
Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools . In the present paper, we solve the integration problem for holomorphic Jacobi manifolds by proving that they integrate to complex contact groupoids. A crucial tool in our proof is what we call the homogenization scheme, which allows us to identify holomorphic Jacobi manifolds with homogeneous holomorphic Poisson manifolds and holomorphic contact groupoids with homogeneous complex symplectic groupoids.
Weighted Lie algebroids were recently introduced as Lie algebroids equipped with an additional compatible non-negative grading, and represent a wide generalisation of the notion of a VB -algebroid. There is a close relation between two term represent ations up to homotopy of Lie algebroids and VB - algebroids. In this paper we show how this relation generalises to weighted Lie algebroids and in doing so we uncover new and natural examples of higher term representations up to homotopy of Lie algebroids. Moreover, we show how the van Est theorem generalises to weighted objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا