ﻻ يوجد ملخص باللغة العربية
Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.
A Jacobi structure $J$ on a line bundle $Lto M$ is weakly regular if the sharp map $J^sharp : J^1 L to DL$ has constant rank. A generalized contact bundle with regular Jacobi structure possess a transverse complex structure. Paralleling the work of B
In this Note, we propose a line bundle approach to odd-dimensional analogues of generalized complex structures. This new approach has three main advantages: (1) it encompasses all existing ones; (2) it elucidates the geometric meaning of the integrab
This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi manifold in a very natural way as well as various tools
We give the first example of a simply connected compact 5-manifold (Smale-Barden manifold) which admits a K-contact structure but does not admit any Sasakian structure, settling a long standing question of Boyer and Galicki.
We find a new class of invariant metrics existing on the tangent bundle of any given almost-Hermitian manifold. We focus here on the case of Riemannian surfaces, which yield new examples of Kahlerian Ricci-flat manifolds in four real dimensions.