ﻻ يوجد ملخص باللغة العربية
VB-groupoids are vector bundles in the category of Lie groupoids. They encompass several classical objects, including Lie group representations and 2-vector spaces. Moreover, they provide geometric pictures for 2-term representations up to homotopy of Lie groupoids. We attach to every VB-groupoid a cochain complex controlling its deformations and discuss its fundamental features, such as Morita invariance and a van Est theorem. Several examples and applications are given.
This thesis deals with deformations of VB-algebroids and VB-groupoids. They can be considered as vector bundles in the categories of Lie algebroids and groupoids and encompass several classical objects, including Lie algebra and Lie group representat
A VB-algebroid is a vector bundle object in the category of Lie algebroids. We attach to every VB-algebroid a differential graded Lie algebra and we show that it controls deformations of the VB-algebroid structure. Several examples and applications a
We study deformations of Lie groupoids by means of the cohomology which controls them. This cohomology turns out to provide an intrinsic model for the cohomology of a Lie groupoid with values in its adjoint representation. We prove several fundamenta
Let $mathbb{X}=[X_1rightrightarrows X_0]$ be a Lie groupoid equipped with a connection, given by a smooth distribution $mathcal{H} subset T X_1$ transversal to the fibers of the source map. Under the assumption that the distribution $mathcal{H}$ is i
We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the the fixed point case (known as Zungs theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The