ترغب بنشر مسار تعليمي؟ اضغط هنا

We continue the study of collisionless systems governed by additive $r^{-alpha}$ interparticle forces by focusing on the influence of the force exponent $alpha$ on radial orbital anisotropy. In this preparatory work we construct the radially anisotro pic Osipkov-Merritt phase-space distribution functions for self-consistent spherical Hernquist models with $r^{-alpha}$ forces and $1leqalpha<3$. The resulting systems are isotropic at the center and increasingly dominated by radial orbits at radii larger than the anisotropy radius $r_a$. For radially anisotropic models we determine the minimum value of the anisotropy radius $r_{ac}$ as a function of $alpha$ for phase-space consistency (such that the phase-space distribution function is nowhere negative for $r_ageq r_{ac}$). We find that $r_{ac}$ decreases for decreasing $alpha$, and that the amount of kinetic energy that can be stored in the radial direction relative to that stored in the tangential directions for marginally consistent models increases for decreasing $alpha$. In particular, we find that isotropic systems are consistent in the explored range of $alpha$. By means of direct $N$-body simulations we finally verify that the isotropic systems are also stable.
We present the analytical solution of the two-integrals Jeans equations for Miyamoto-Nagai discs embedded in Binney logarithmic dark matter haloes. The equations can be solved (both with standard methods and with the Residue Theorem) for arbitrary ch oices of the parameters, thus providing a very flexible two-component galaxy model, ranging from flattened discs to spherical systems. A particularly interesting case is obtained when the dark matter halo reduces to the Singular Isothermal Sphere. Azimuthal motions are separated in the ordered and velocity dispersion components by using the Satoh decomposition. The obtained formulae can be used in numerical simulations of galactic gas flows, for testing codes of stellar dynamics, and to study the dependence of the stellar velocity dispersion and of the asymmetric drift in the equatorial plane as a function of disc and halo flattenings. Here, we estimate the inflow radial velocities of the interstellar medium, expected by the mixing of the stellar mass losses of the lagging stars in the disc with a pre-existing gas in circular orbit.
We present a detailed diagnostic study of the observed temperatures of the hot X-ray coronae of early-type galaxies. By extending the investigation carried out in Pellegrini (2011) with spherical models, we focus on the dependence of the energy budge t and temperature of the hot gas on the galaxy structure and internal stellar kinematics. By solving the Jeans equations we construct realistic axisymmetric three-component galaxy models (stars, dark matter halo, central black hole) with different degrees of flattening and rotational support. The kinematical fields are projected along different lines of sight, and the aperture velocity dispersion is computed within a fraction of the circularized effective radius. The model parameters are chosen so that the models resemble real ETGs and lie on the Faber-Jackson and Size-Luminosity relations. For these models we compute T_* (the stellar heating contribution to the gas injection temperature) and T_gm (the temperature equivalent of the energy required for the gas escape). In particular, different degrees of thermalisation of the ordered rotational field of the galaxy are considered. We find that T_* and T_gm can vary only mildly due to a pure change of shape. Galaxy rotation instead, when not thermalised, can lead to a large decrease of T_*; this effect can be larger in flatter galaxies that can be more rotationally supported. Recent temperature measurements T_x, obtained with Chandra, are larger than, but close to, the T_* values of the models, and show a possible trend for a lower T_x in flatter and more rotationally supported galaxies; this trend can be explained by the lack of thermalisation of the whole stellar kinetic energy. Flat and rotating galaxies also show lower L_x values, and then a lower gas content, but this is unlikely to be due to the small variation of T_gm found here for them.
Elliptical galaxies have hot coronae with X-ray luminosities and mean gas temperatures that span over wide ranges. This variation can be partially due to the energy budget of the hot gas, that depends on the host galaxy structure and internal kinemat ics. With the aid of realistic axisymmetric galaxy models, we performed a diagnostic study focussed on the effects of galaxy flattening and rotational support on the hot gas temperature.
We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently th e sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus (AGN) into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be sum marized by the dimensionless parameter $eta=dot{M_outflow}/dot{M_accretion}= (2 epsilon_w c^2)/v_w^2$ where ($epslion_w equiv dot{E}_w/(dot{M_accretion} c^2)$) is the efficiency by which accreted matter is turned into wind energy in the disc surrounding the central SMBH. The outflowing mass and omentum are proportional to $eta$, and many prior treatments have essentially assumed that $eta=0$. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to an hundred fold increase in the mass of the SMBH to over $10^{10} Msun$. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies which lead to the most observationally acceptable results are relatively low with $epsilon_w lesssim 10^{-4}$.
We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.
28 - Luca Ciotti 2008
Dynamical properties of two-component galaxy models whose stellar density distribution is described by a gamma-model while the total density distribution has a pure r^(-2) profile, are presented. The orbital structure of the stellar component is desc ribed by Osipkov-Merritt anisotropy, while the dark matter halo is isotropic. After a description of minimum halo models, the positivity of the phase-space density (the model consistency) is investigated, and necessary and sufficient conditions for consistency are obtained analytically as a function of the stellar inner density slope gamma and anisotropy radius. The explicit phase-space distribution function is recovered for integer values of gamma, and it is shown that while models with gamma>4/17 are consistent when the anisotropy radius is larger than a critical value (dependent on gamma), the gamma=0 models are unphysical even in the fully isotropic case. The Jeans equations for the stellar component are then solved analytically; in addition, the projected velocity dispersion at the center and at large radii are also obtained analytically for generic values of the anisotropy radius, and it is found that they are given by remarkably simple expressions. The presented models, even though highly idealized, can be useful as starting point for more advanced modeling of the mass distribution of elliptical galaxies in studies combining stellar dynamics and gravitational lensing.
We present the results of N-body simulations of dissipationless galaxy merging in Modified Newtonian Dynamics (MOND). For comparison, we also studied Newtonian merging between galaxies embedded in dark matter halos, with internal dynamics equivalent to the MOND systems. We found that the merging timescales are significantly longer in MOND than in Newtonian gravity with dark matter, suggesting that observational evidence of rapid merging could be difficult to explain in MOND. However, when two galaxies eventually merge, the MOND merging end-product is hardly distinguishable from the final stellar distribution of an equivalent Newtonian merger with dark matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا