ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of flattening and rotation on the temperature of the X-ray halos of elliptical galaxies

99   0   0.0 ( 0 )
 نشر من قبل Luca Ciotti
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elliptical galaxies have hot coronae with X-ray luminosities and mean gas temperatures that span over wide ranges. This variation can be partially due to the energy budget of the hot gas, that depends on the host galaxy structure and internal kinematics. With the aid of realistic axisymmetric galaxy models, we performed a diagnostic study focussed on the effects of galaxy flattening and rotational support on the hot gas temperature.



قيم البحث

اقرأ أيضاً

There is mounting evidence that compact elliptical galaxies (CEGs) are local analogs of the high-redshift red nuggets thought to represent progenitors of todays early-type galaxies (ETGs). We report the discovery of extended X-ray emission from a hot interstellar / intragroup medium in two CEGs, Mrk 1216 and PGC 032873, using shallow archival Chandra observations. We find that PGC 032873 has an average gas temperature $k_BT=0.67pm 0.06$ keV within a radius of 15 kpc, and a luminosity $L_{rm x} = (1.8pm 0.2)times 10^{41}$ erg s$^{-1}$ within a radius of 100kpc. For Mrk 1216, which is closer and more luminous $[L_{rm x}(rm <100~kpc) = (12.1pm 1.9)times 10^{41}$ erg s$^{-1}]$, we performed a spatially resolved spectral analysis in 7 annuli out to a radius of 73 kpc. Using an entropy-based hydrostatic equilibrium (HE) procedure, we obtain a good constraint on the $H$-band stellar mass-to-light ratio, $M_{rm stars}/L_H=1.33pm 0.21$ solar, in good agreement with stellar dynamical (SD) studies, which supports the HE approximation. We obtain a density slope $2.22pm 0.08$ within $R_e$ consistent with other CEGs and normal local ETGs, while the dark matter (DM) fraction within $R_e$, $f_{rm DM}=0.20pm 0.07$, is similar to local ETGs. We place a constraint on the SMBH mass, $M_{rm BH} = (5pm 4)times 10^{9}, M_{odot}$, with a 90% upper limit of $M_{rm BH} = 1.4times 10^{10}, M_{odot}$, consistent with a recent SD measurement. We obtain a halo concentration $(c_{200}=17.5pm 6.7)$ and mass [$M_{200} = (9.6pm 3.7)times 10^{12}, M_{odot}$], where $c_{200}$ exceeds the mean $Lambda$CDM value ($approx 7$), consistent with a system that formed earlier than the general halo population. We suggest that these galaxies, which reside in group-scale halos, should be classified as fossil groups. (Abridged)
165 - Ortwin Gerhard 2010
Recent progress is summarized on the determination of the density distributions of stars and dark matter, stellar kinematics, and stellar population properties, in the extended, low surface brightness halo regions of elliptical galaxies. With integra l field absorption spectroscopy and with planetary nebulae as tracers, velocity dispersion and rotation profiles have been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the outer edge at ~150 kpc. The results are generally consistent with the known dichotomy of elliptical galaxy types, but some galaxies show more complex rotation profiles in their halos and there is a higher incidence of misalignments, indicating triaxiality. Dynamical models have shown a range of slopes for the total mass profiles, and that the inner dark matter densities in ellipticals are higher than in spiral galaxies, indicating earlier assembly redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals and comparison with dynamical mass determinations indicates that non-thermal components to the pressure may be important in the inner ~10 kpc, and that the properties of these systems are closely related to their group environments. First results on the outer halo stellar population properties do not yet give a clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances indicate longer star formation histories pointing towards late accretion of the halo. This is consistent with independent evidence for on-going accretion, and suggests a connection to the observed size evolution of elliptical galaxies with redshift.
We present a detailed diagnostic study of the observed temperatures of the hot X-ray coronae of early-type galaxies. By extending the investigation carried out in Pellegrini (2011) with spherical models, we focus on the dependence of the energy budge t and temperature of the hot gas on the galaxy structure and internal stellar kinematics. By solving the Jeans equations we construct realistic axisymmetric three-component galaxy models (stars, dark matter halo, central black hole) with different degrees of flattening and rotational support. The kinematical fields are projected along different lines of sight, and the aperture velocity dispersion is computed within a fraction of the circularized effective radius. The model parameters are chosen so that the models resemble real ETGs and lie on the Faber-Jackson and Size-Luminosity relations. For these models we compute T_* (the stellar heating contribution to the gas injection temperature) and T_gm (the temperature equivalent of the energy required for the gas escape). In particular, different degrees of thermalisation of the ordered rotational field of the galaxy are considered. We find that T_* and T_gm can vary only mildly due to a pure change of shape. Galaxy rotation instead, when not thermalised, can lead to a large decrease of T_*; this effect can be larger in flatter galaxies that can be more rotationally supported. Recent temperature measurements T_x, obtained with Chandra, are larger than, but close to, the T_* values of the models, and show a possible trend for a lower T_x in flatter and more rotationally supported galaxies; this trend can be explained by the lack of thermalisation of the whole stellar kinetic energy. Flat and rotating galaxies also show lower L_x values, and then a lower gas content, but this is unlikely to be due to the small variation of T_gm found here for them.
148 - Curtis J. Saxton 2010
The kinematics of stars and planetary nebulae in early type galaxies provide vital clues to the enigmatic physics of their dark matter halos. We fit published data for fourteen such galaxies using a spherical, self-gravitating model with two componen ts: (1) a Sersic stellar profile fixed according to photometric parameters, and (2) a polytropic dark matter halo that conforms consistently to the shared gravitational potential. The polytropic equation of state can describe extended theories of dark matter involving self-interaction, non-extensive thermostatistics, or boson condensation (in a classical limit). In such models, the flat-cored mass profiles widely observed in disc galaxies are due to innate dark physics, regardless of any baryonic agitation. One of the natural parameters of this scenario is the number of effective thermal degrees of freedom of dark matter (F_d) which is proportional to the dark heat capacity. By default we assume a cosmic ratio of baryonic and dark mass. Non-Sersic kinematic ideosyncrasies and possible non-sphericity thwart fitting in some cases. In all fourteen galaxies the fit with a polytropic dark halo improves or at least gives similar fits to the velocity dispersion profile, compared to a stars-only model. The good halo fits usually prefer F_d values from six to eight. This range complements the recently inferred limit of 7<F_d<10 (Saxton & Wu), derived from constraints on galaxy cluster core radii and black hole masses. However a degeneracy remains: radial orbital anisotropy or a depleted dark mass fraction could shift our models preference towards lower F_d; whereas a loss of baryons would favour higher F_d.
Without the interference of a number of events, galaxies may suffer in crowded environments (e.g., stripping, harassment, strangulation); isolated elliptical galaxies provide a control sample for the study of galaxy formation. We present the study of a sample of isolated ellipticals using imaging from a variety of telescopes, focusing on their globular cluster systems as tracers of their stellar halos. Our main findings are: (a) GC color bimodality is common even in the most isolated systems; (b) the specific frequency of GCs is fairly constant with galaxy mass, without showing an increase towards high-mass systems like in the case of cluster ellipticals; (c) on the other hand, the red fraction of GCs follows the same inverted V shape trend with mass as seen in cluster ellipticals; and (d) the stellar halos show low Sersic indices which are consistent with a major merger origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا