ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute higher Frobenius-Schur indicators of pq-dimensional pointed Hopf algebras in characteristic p through their associated graded Hopf algebras. These indicators are gauge invariants for the monoidal categories of representations of these algebras.
204 - Zheping Lu , Linhong Wang , 2019
Let $R$ be the associative $k$-algebra generated by two elements $x$ and $y$ with defining relation $yx=1$. A complete description of simple modules over $R$ is obtained by using the results of Irving and Gerritzen. We examine the short exact sequenc e $0rightarrow Urightarrow E rightarrow Vrightarrow 0$, where $U$ and $V$ are simple $R$-modules. It shows that nonsplit extension only occurs when both $U$ and $V$ are one-dimensional, or, under certain condition, $U$ is infinite-dimensional and $V$ is one-dimensional.
We study the representation theoretic results of the binary cubic generic Clifford algebra $mathcal C$, which is an Artin-Schelter regular algebra of global dimension five. In particular, we show that $mathcal C$ is a PI algebra of PI degree three an d compute its point variety and discriminant ideals. As a consequence, we give a necessary and sufficient condition on a binary cubic form $f$ for the associated Clifford algebra $mathcal C_f$ to be an Azumaya algebra.
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are a ll roots of unity. In this setting, $R$ is a PI algebra, and we can apply results of De Concini, Kac, and Procesi to show that $L$ is an Azumaya algebra whose degree can be inferred from the $q_{ij}$. Our main result establishes an exact criterion (dependent on the $q_{ij}$) for determining when the centers of $L$ and $R$ are commutative Laurent series and commutative power series rings, respectively. In the event this criterion is satisfied, it follows that $L$ is a unique factorization ring in the sense of Chatters and Jordan, and it further follows, by results of Dumas, Launois, Lenagan, and Rigal, that $R$ is a unique factorization ring. We thus produce new examples of complete, local, noetherian, noncommutative, unique factorization rings (that are PI domains).
The notion of $n$-th indicator for a finite-dimensional Hopf algebra was introduced by Kashina, Montgomery and Ng as gauge invariance of the monoidal category of its representations. The properties of these indicators were further investigated by Shi mizu. In this short note, we show that the indicators appearing in positive characteristic all share the same sequence pattern if we assume the coradical of the Hopf algebra is a local Hopf subalgebra.
154 - Hao Hu , Xinyi Hu , Linhong Wang 2017
We compute higher Frobenius-Schur indicators of Radford algebras in positive characteristic and find minimal polynomials of these linearly recursive sequences. As a result of Kashina, Montgomery and Ng, we obtain gauge invariants for the monoidal categories of representations of Radford algebras.
For finite-dimensional Hopf algebras, their classification in characteristic $0$ (e.g. over $mathbb{C}$) has been investigated for decades with many fruitful results, but their structures in positive characteristic have remained elusive. In this pape r, working over an algebraically closed field $mathbf{k}$ of prime characteristic $p$, we introduce the concept, called Primitive Deformation, to provide a structured technique to classify certain finite-dimensional connected Hopf algebras which are almost primitively generated; that is, these connected Hopf algebras are $p^{n+1}$-dimensional, whose primitive spaces are abelian restricted Lie algebras of dimension $n$. We illustrate this technique for the case $n=2$. Together with our preceding results in arXiv:1309.0286, we provide a complete classification of $p^3$-dimensional connected Hopf algebras over $mathbf{k}$ of characteristic $p>2$.
Let $p$ be a prime, $k$ be an algebraically closed field of characteristic $p$. In this paper, we provide the classification of connected Hopf algebras of dimension $p^3$, except the case when the primitive space of the Hopf algebra is two dimensiona l and abelian. Each isomorphism class is presented by generators $x, y, z$ with relations and Hopf algebra structures. Let $mu$ be the multiplicative group of $(p^2+p-1)$-th roots of unity. When the primitive space is one-dimensional and $p$ is odd, there is an infinite family of isomorphism classes, which is naturally parameterized by $A_{k}^1/mu$.
49 - Gary Walls , Linhong Wang 2013
In general the endomorphisms of a non-abelian group do not form a ring under the operations of addition and composition of functions. Several papers have dealt with the ring of functions defined on a group which are endomorphisms when restricted to t he elements of a cover of the group by abelian subgroups. We give an algorithm which allows us to determine the elements of the ring of functions of a finite $p$-group which arises in this manner when the elements of the cover are required to be either cyclic or elementary abelian of rank $2$. This enables us to determine the actual structure of such a ring as a subdirect product. A key part of the argument is the construction of a graph whose vertices are the subgroups of order $p$ and whose edges are determined by the covering.
Let $p$ be a prime. We complete the classification on pointed Hopf algebras of dimension $p^2$ over an algebraically closed field $k$. When $text{char}k eq p$, our result is the same as the well-known result for $text{char}k=0$. When $text{char}k=p$ , we obtain 14 types of pointed Hopf algebras of dimension $p^2$, including a unique noncommutative and noncocommutative type.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا