ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of pointed Hopf algebras of dimension $p^2$ over any algebraically closed field

93   0   0.0 ( 0 )
 نشر من قبل Xingting Wang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $p$ be a prime. We complete the classification on pointed Hopf algebras of dimension $p^2$ over an algebraically closed field $k$. When $text{char}k eq p$, our result is the same as the well-known result for $text{char}k=0$. When $text{char}k=p$, we obtain 14 types of pointed Hopf algebras of dimension $p^2$, including a unique noncommutative and noncocommutative type.



قيم البحث

اقرأ أيضاً

Let $p$ be a prime, $k$ be an algebraically closed field of characteristic $p$. In this paper, we provide the classification of connected Hopf algebras of dimension $p^3$, except the case when the primitive space of the Hopf algebra is two dimensiona l and abelian. Each isomorphism class is presented by generators $x, y, z$ with relations and Hopf algebra structures. Let $mu$ be the multiplicative group of $(p^2+p-1)$-th roots of unity. When the primitive space is one-dimensional and $p$ is odd, there is an infinite family of isomorphism classes, which is naturally parameterized by $A_{k}^1/mu$.
We classify pointed $p^3$-dimensional Hopf algebras $H$ over any algebraically closed field $k$ of prime characteristic $p>0$. In particular, we focus on the cases when the group $G(H)$ of group-like elements is of order $p$ or $p^2$, that is, when $ H$ is pointed but is not connected nor a group algebra. This work provides many new examples of (parametrized) non-commutative and non-cocommutative finite-dimensional Hopf algebras in positive characteristic.
The quiver Hopf algebras are classified by means of ramification systems with irreducible representations. This leads to the classification of Nichols algebras over group algebras and pointed Hopf algebras of type one.
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hop f algebras, which allows for the application of a result of Masuoka about Morita-Takeuchi equivalence and of Schauenburg about Hopf Galois extensions. The infinitesimal part of the deforming cocycle and of the deformation determine the deformed multiplication and can be described explicitly in terms of Hochschild cohomology. Applications to, and results for copointed Hopf algebras are also considered.
305 - Pavel Etingof , Cris Negron 2019
We examine actions of finite-dimensional pointed Hopf algebras on central simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module algebra structure.) In all examples considered, we show that the given Hopf algebra does a dmit a faithful action on a central simple division algebra, and we construct such a division algebra. This is in contrast to earlier work of Etingof and Walton, in which it was shown that most pointed Hopf algebras do not admit faithful actions on fields. We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an example of non-Cartan type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا