ﻻ يوجد ملخص باللغة العربية
Let $R$ be the associative $k$-algebra generated by two elements $x$ and $y$ with defining relation $yx=1$. A complete description of simple modules over $R$ is obtained by using the results of Irving and Gerritzen. We examine the short exact sequence $0rightarrow Urightarrow E rightarrow Vrightarrow 0$, where $U$ and $V$ are simple $R$-modules. It shows that nonsplit extension only occurs when both $U$ and $V$ are one-dimensional, or, under certain condition, $U$ is infinite-dimensional and $V$ is one-dimensional.
An square matrix is $k$-Toeplitz if its diagonals are periodic sequences of period $k$. We find rational formulas for the determinant, the characteristic polynomial, and the elements of the inverse of a tridiagonal $k$-Toeplitz matrix (in particular,
In this paper, we continue our study of the tensor product structure of category $mathcal W$ of weight modules over the Hopf-Ore extensions $kG(chi^{-1}, a, 0)$ of group algebras $kG$, where $k$ is an algebraically closed field of characteristic zero
We consider categories over a field $k$ in order to prove that smash extensions and Galois coverings with respect to a finite group coincide up to Morita equivalence of $k$-categories. For this purpose we describe processes providing Morita equivalen
The ring operations and the metric on $C(X)$ are extended to the set $mathbb{H}_{nf}(X)$ of all nearly finite Hausdorff continuous interval valued functions and it is shown that $mathbb{H}_{nf}(X)$ is both rationally and topologically complete. Hence
This paper addresses the development of analytical tools for the computation of the moments of random Gram matrices with one side correlation. Such a question is mainly driven by applications in signal processing and wireless communications wherein s