ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered two-dimensional (2D) semiconducting transition metal dichalcogenides (TMD) have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future th in film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs) have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.
Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) i n the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kohm*um and 0.5 kohm*um, respectively. The significant reduction of the Rc is attributed to the achieved high electron doping density thus significant reduction of Schottky barrier width. As a proof-ofconcept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 uA/um, an on/off ratio of 4*106, and a peak field-effect mobility of 60 cm2/V*s. This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nano-electronic devices.
In this paper, we report a novel chemical doping technique to reduce the contact resistance (Rc) of transition metal dichalcogenides (TMDs) - eliminating two major roadblocks (namely, doping and high Rc) towards demonstration of high-performance TMDs field-effect transistors (FETs). By using 1,2 dichloroethane (DCE) as the doping reagent, we demonstrate an active n-type doping density > 2*1019 cm-3 in a few-layer MoS2 film. This enabled us to reduce the Rc value to a record low number of 0.5 kohm*um, which is ~10x lower than the control sample without doping. The corresponding specific contact resistivity (pc) is found to decrease by two orders of magnitude. With such low Rc, we demonstrate 100 nm channel length (Lch) MoS2 FET with a drain current (Ids) of 460 uA/um at Vds = 1.6 V, which is twice the best value reported so far on MoS2 FETs.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr ical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا