ترغب بنشر مسار تعليمي؟ اضغط هنا

The undulator line of the Shanghai soft X-ray Free-electron Laser facility (SXFEL) has very tight tolerances on the straightness of the electron beam trajectory. However, the beam trajectory cannot meet the lasing requirements due to the influence of beam position, launch angle and quadrupole offsets. Traditional mechanical alignment can only control the rms of offsets to about 100 $mu$m, which is far from reaching the requirement. Further orbit correction can be achieved by beam-based alignment (BBA) method based on electron energy variations. K modulation is used to determine whether the beam passes through the quadrupole magnetic center, and the Dispersion-Free Steering (DFS) method is used to calculate the offsets of quadrupole and BPM. In this paper, a detailed result of simulation is presented which demonstrates that the beam trajectory with rms and standard deviation ($sigma$) less than 10 $mu$m can be obtained.
165 - Chenliang Xue , An Zhang 2021
This article introduces the double Hecke algebra, which is an infinite dimensional algebra generated by two Hecke algebras. This concept originates from the degenerate double Hecke algebra in the theory of Schur-Weyl duality related to enhanced reduc tive algebraic groups. We will study the finite dimensional natural representation of the double Hecke algebra on tensor space and prove that the double Hecke algebra forms a duality with the Levi type quantum group.
Pretrained Language Models (PLMs) have achieved tremendous success in natural language understanding tasks. While different learning schemes -- fine-tuning, zero-shot and few-shot learning -- have been widely explored and compared for languages such as English, there is comparatively little work in Chinese to fairly and comprehensively evaluate and compare these methods. This work first introduces Chinese Few-shot Learning Evaluation Benchmark (FewCLUE), the first comprehensive small sample evaluation benchmark in Chinese. It includes nine tasks, ranging from single-sentence and sentence-pair classification tasks to machine reading comprehension tasks. Given the high variance of the few-shot learning performance, we provide multiple training/validation sets to facilitate a more accurate and stable evaluation of few-shot modeling. An unlabeled training set with up to 20,000 additional samples per task is provided, allowing researchers to explore better ways of using unlabeled samples. Next, we implement a set of state-of-the-art (SOTA) few-shot learning methods (including PET, ADAPET, LM-BFF, P-tuning and EFL), and compare their performance with fine-tuning and zero-shot learning schemes on the newly constructed FewCLUE benchmark.Our results show that: 1) all five few-shot learning methods exhibit better performance than fine-tuning or zero-shot learning; 2) among the five methods, PET is the best performing few-shot method; 3) few-shot learning performance is highly dependent on the specific task. Our benchmark and code are available at https://github.com/CLUEbenchmark/FewCLUE
369 - Guosheng Fu , Zhiliang Xu 2021
We present a novel class of high-order space-time finite element schemes for the Poisson-Nernst-Planck (PNP) equations. We prove that our schemes are mass conservative, positivity preserving, and unconditionally energy stable for any order of approxi mation. To the best of our knowledge, this is the first class of (arbitrarily) high-order accurate schemes for the PNP equations that simultaneously achieve all these three properties. This is accomplished via (1) using finite elements to directly approximate the so-called entropy variable instead of the density variable, and (2) using a discontinuous Galerkin (DG) discretization in time. The entropy variable formulation, which was originally developed by Metti et al. [17] under the name of a log-density formulation, guarantees both positivity of densities and a continuous-in-time energy stability result. The DG in time discretization further ensures an unconditional energy stability in the fully discrete level for any approximation order, where the lowest order case is exactly the backward Euler discretization and in this case we recover the method of Metti et al. [17].
63 - Zhiheng Li , Chenliang Xu 2021
Recent works find that AI algorithms learn biases from data. Therefore, it is urgent and vital to identify biases in AI algorithms. However, the previous bias identification pipeline overly relies on human experts to conjecture potential biases (e.g. , gender), which may neglect other underlying biases not realized by humans. To help human experts better find the AI algorithms biases, we study a new problem in this work -- for a classifier that predicts a target attribute of the input image, discover its unknown biased attribute. To solve this challenging problem, we use a hyperplane in the generative models latent space to represent an image attribute; thus, the original problem is transformed to optimizing the hyperplanes normal vector and offset. We propose a novel total-variation loss within this framework as the objective function and a new orthogonalization penalty as a constraint. The latter prevents trivial solutions in which the discovered biased attribute is identical with the target or one of the known-biased attributes. Extensive experiments on both disentanglement datasets and real-world datasets show that our method can discover biased attributes and achieve better disentanglement w.r.t. target attributes. Furthermore, the qualitative results show that our method can discover unnoticeable biased attributes for various object and scene classifiers, proving our methods generalizability for detecting biased attributes in diverse domains of images. The code is available at https://git.io/J3kMh.
422 - Yapeng Tian , Di Hu , Chenliang Xu 2021
There are rich synchronized audio and visual events in our daily life. Inside the events, audio scenes are associated with the corresponding visual objects; meanwhile, sounding objects can indicate and help to separate their individual sounds in the audio track. Based on this observation, in this paper, we propose a cyclic co-learning (CCoL) paradigm that can jointly learn sounding object visual grounding and audio-visual sound separation in a unified framework. Concretely, we can leverage grounded object-sound relations to improve the results of sound separation. Meanwhile, benefiting from discriminative information from separated sounds, we improve training example sampling for sounding object grounding, which builds a co-learning cycle for the two tasks and makes them mutually beneficial. Extensive experiments show that the proposed framework outperforms the compared recent approaches on both tasks, and they can benefit from each other with our cyclic co-learning.
121 - Yapeng Tian , Chenliang Xu 2021
In this paper, we propose to make a systematic study on machines multisensory perception under attacks. We use the audio-visual event recognition task against multimodal adversarial attacks as a proxy to investigate the robustness of audio-visual lea rning. We attack audio, visual, and both modalities to explore whether audio-visual integration still strengthens perception and how different fusion mechanisms affect the robustness of audio-visual models. For interpreting the multimodal interactions under attacks, we learn a weakly-supervised sound source visual localization model to localize sounding regions in videos. To mitigate multimodal attacks, we propose an audio-visual defense approach based on an audio-visual dissimilarity constraint and external feature memory banks. Extensive experiments demonstrate that audio-visual models are susceptible to multimodal adversarial attacks; audio-visual integration could decrease the model robustness rather than strengthen under multimodal attacks; even a weakly-supervised sound source visual localization model can be successfully fooled; our defense method can improve the invulnerability of audio-visual networks without significantly sacrificing clean model performance.
In optical metrological protocols to measure physical quantities, it is, in principle, always beneficial to increase photon number to improve measurement precision. However, practical constraints prevent arbitrary increase of n due to the imperfectio ns of a practical detector, especially when the detector response is dominated by saturation effect. In this work, we show that a modified weak measurement protocol, namely, biased weak measurement significantly improves the precision of optical metrology in the presence of saturation effect. This method detects an ultra-small fraction of photons while maintains considerable amount of metrological information. The biased pre-coupling leads to an additional reduction of photons in the post-selection and generates an extinction point in the spectrum distribution, which is extremely sensitive to the estimated parameter and difficult to be saturated. Therefore, the Fisher information can be persistently enhanced by increasing the photon number. In our magnetic-sensing experiment, biased weak measurement achieves precision approximately one order of magnitude better than those of previously used methods. The proposed method can be applied in various optical measurement schemes to circumvent detector saturation effect with low-cost apparatuses.
We present an innovative framework, Crowdsourcing Autonomous Traffic Simulation (CATS) framework, in order to safely implement and realize orderly traffic flows. We firstly provide a semantic description of the CATS framework using theories of econom ics to construct coupling constraints among drivers, in which drivers monitor each other by making use of transportation resources and driving credit. We then introduce an emotion-based traffic simulation, which utilizes the Weber-Fechner law to integrate economic factors into drivers behaviors. Simulation results show that the CATS framework can significantly reduce traffic accidents and improve urban traffic conditions.
Face attribute editing aims to generate faces with one or multiple desired face attributes manipulated while other details are preserved. Unlike prior works such as GAN inversion, which has an expensive reverse mapping process, we propose a simple fe ed-forward network to generate high-fidelity manipulated faces. By simply employing some existing and easy-obtainable prior information, our method can control, transfer, and edit diverse attributes of faces in the wild. The proposed method can consequently be applied to various applications such as face swapping, face relighting, and makeup transfer. In our method, we decouple identity, expression, pose, and illumination using 3D priors; separate texture and colors by using region-wise style codes. All the information is embedded into adversarial learning by our identity-style normalization module. Disentanglement losses are proposed to enhance the generator to extract information independently from each attribute. Comprehensive quantitative and qualitative evaluations have been conducted. In a single framework, our method achieves the best or competitive scores on a variety of face applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا