ترغب بنشر مسار تعليمي؟ اضغط هنا

FaceController: Controllable Attribute Editing for Face in the Wild

221   0   0.0 ( 0 )
 نشر من قبل Zhiliang Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face attribute editing aims to generate faces with one or multiple desired face attributes manipulated while other details are preserved. Unlike prior works such as GAN inversion, which has an expensive reverse mapping process, we propose a simple feed-forward network to generate high-fidelity manipulated faces. By simply employing some existing and easy-obtainable prior information, our method can control, transfer, and edit diverse attributes of faces in the wild. The proposed method can consequently be applied to various applications such as face swapping, face relighting, and makeup transfer. In our method, we decouple identity, expression, pose, and illumination using 3D priors; separate texture and colors by using region-wise style codes. All the information is embedded into adversarial learning by our identity-style normalization module. Disentanglement losses are proposed to enhance the generator to extract information independently from each attribute. Comprehensive quantitative and qualitative evaluations have been conducted. In a single framework, our method achieves the best or competitive scores on a variety of face applications.



قيم البحث

اقرأ أيضاً

Although significant progress has been made in synthesizing high-quality and visually realistic face images by unconditional Generative Adversarial Networks (GANs), there still lacks of control over the generation process in order to achieve semantic face editing. In addition, it remains very challenging to maintain other face information untouched while editing the target attributes. In this paper, we propose a novel learning framework, called GuidedStyle, to achieve semantic face editing on StyleGAN by guiding the image generation process with a knowledge network. Furthermore, we allow an attention mechanism in StyleGAN generator to adaptively select a single layer for style manipulation. As a result, our method is able to perform disentangled and controllable edits along various attributes, including smiling, eyeglasses, gender, mustache and hair color. Both qualitative and quantitative results demonstrate the superiority of our method over other competing methods for semantic face editing. Moreover, we show that our model can be also applied to different types of real and artistic face editing, demonstrating strong generalization ability.
143 - Yuxuan Han , Jiaolong Yang , 2021
Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute varia tion disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GANs training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin. Code is available at https://github.com/yxuhan/IALS.
Facial attribute analysis in the real world scenario is very challenging mainly because of complex face variations. Existing works of analyzing face attributes are mostly based on the cropped and aligned face images. However, this result in the capab ility of attribute prediction heavily relies on the preprocessing of face detector. To address this problem, we present a novel jointly learned deep architecture for both facial attribute analysis and face detection. Our framework can process the natural images in the wild and our experiments on CelebA and LFWA datasets clearly show that the state-of-the-art performance is obtained.
85 - Yi Wei , Zhe Gan , Wenbo Li 2020
We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction o f a mask-guided reconstruction loss, MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes, while preserving the attribute-irrelevant regions (e.g., hat, scarf for modification `To Bald). Further, a novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator. In addition, a multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution ($1024 times 1024$) face editing. Experiments on the CelebA benchmark show that the proposed method significantly outperforms prior state-of-the-art approaches in terms of both image quality and editing performance.
On existing public benchmarks, face forgery detection techniques have achieved great success. However, when used in multi-person videos, which often contain many people active in the scene with only a small subset having been manipulated, their perfo rmance remains far from being satisfactory. To take face forgery detection to a new level, we construct a novel large-scale dataset, called FFIW-10K, which comprises 10,000 high-quality forgery videos, with an average of three human faces in each frame. The manipulation procedure is fully automatic, controlled by a domain-adversarial quality assessment network, making our dataset highly scalable with low human cost. In addition, we propose a novel algorithm to tackle the task of multi-person face forgery detection. Supervised by only video-level label, the algorithm explores multiple instance learning and learns to automatically attend to tampered faces. Our algorithm outperforms representative approaches for both forgery classification and localization on FFIW-10K, and also shows high generalization ability on existing benchmarks. We hope that our dataset and study will help the community to explore this new field in more depth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا