ترغب بنشر مسار تعليمي؟ اضغط هنا

We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong Coulomb repulsion is found to account systematically for the major features of high-temperature superconductivity, with microscopic details of the parent compounds entering only parametrically. This provides a systematic procedure to separate essential from peripheral, suggesting that many features exhibited by the high-$Ttsub c$ data set are of interest in their own right but are not central to the superconducting mechanism. More generally, we propose that the surprisingly broad range of conventional and unconventional superconducting and superfluid behavior observed across many fields of physics results from the systematic appearance of similar algebraic structures for the emergent effective Hamiltonians, even though the microscopic Hamiltonians of the corresponding parent states may differ radically from each other.
In this work, we study the thermodynamics of a two-level system (qubit) embedded in a finite-temperature structured-bath under periodical measurements. The system under measurements will reach a quasi-steady state, whose effective temperature can be maintained lower than that of the surrounding environment. To study the influence of the environmental oscillators from different regimes of frequency on the qubit, the spectrum of the bath consisting of a large number of bosonic harmonic oscillators can be approximately divided into three parts according to their effects of cooling or heating. Due to the spectral analysis over the structured-bath based on the non-Markovian master equation beyond the rotating-wave approximation, we propose a sufficient cooling condition for the bath in the context of quantum non-selective measurement. It is consisted of two items: (i) the logarithmic derivative of the spectrum around the system transition frequency is large enough, at least larger than one half of the inverse temperature of the bath; (ii) the spectrum should have a sharp high-frequency cutoff that is not far-detuning from the system transition frequency. From this condition, we find that two popular types of spectra, i.e., the modified Lorentzian models and the super-Ohmic models, are available environments for cooling the open quantum system.
Energy transport is of central importance in understanding a wide variety of transitions of physical states in nature. Recently, the coherence and noise have been identified for their existence and key roles in energy transport processes, for instanc e, in a photosynthesis complex, DNA, and odor sensing etc, of which one may have to reveal the inner mechanics in the quantum regime. Here we present an analog of Newtons cradle by manipulating a boundary-controlled chain on a photonic chip. Long-range interactions can be mediated by a long chain composed of 21 strongly coupled sites, where single-photon excitations are transferred between two remote sites via simultaneous control of inter-site weak and strong couplings. We observe a high retrieval efficiency in both uniform and defect-doped chain structures. Our results may offer a flexible approach to Hamiltonian engineering beyond geometric limitation, enabling the design and construction of quantum simulators on demand.
Realization of strong coupling between two different quantum systems is important for fast transferring quantum information between them, but its implementation is difficult in some hybrid quantum systems. Here we propose a scheme to enhance the coup ling strength between a single nitrogen-vacancy center and a superconducting circuit via squeezing. The main recipe of our scheme is to construct a unitary squeezing transformation by directly tuning the specifically-designed superconducting circuit. Using the experimentally accessible parameters of the circuit, we find that the coupling strength can be largely amplified by applying the squeezing transformations to the system. This provides a new path to enhance the coupling strengths in hybrid quantum systems.
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the $Lambda$-type three-level system, this dark state is generally regarded as bei ng dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a $Lambda$-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
128 - Lian-Ao Wu , Matthew Murphy , 2016
A formalism is presented for treating strongly-correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle--hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) al gebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously-broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree--Fock--Bogoliubov solutions, or equivalently a microscopically-derived Ginzburg--Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
237 - Lian-Ao Wu , Mike Guidry 2015
Graphene SU(4) quantum Hall symmetry is extended to SO(8), permitting analytical solutions for graphene in a magnetic field that break SU(4) spontaneously. We recover standard graphene SU(4) physics as one limit, but find new phases and new propertie s that may be relevant for understanding the ground state. The graphene SO(8) symmetry is found to be isomorphic to one that occurs extensively in nuclear structure physics, and very similar to one that describes high-temperature superconductors, suggesting deep mathematical connections among these physically-different fermionic systems.
58 - Zhixin Wang , Xiu Gu , Lian-Ao Wu 2014
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement quantum simulators. Quantum simulators are physic al setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. Fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا