ﻻ يوجد ملخص باللغة العربية
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the $Lambda$-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a $Lambda$-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
Recent experiments have pushed the studies on atom-photon interactions to the ultrastrong regime, which motivates the exploration of physics beyond the rotation wave approximation. Here we study the single-photon scattering on a system composed by a
Recently, the studies on the light-matter interaction have been pushed into the ultrastrong coupling regime, which motivates the exploration of applications of the counter rotating wave (CRW) interaction. Even in the ultrastrong coupling regime, howe
We consider a single ion confined in a trap under radiation of two traveling waves of lasers. In the strong-excitation regime and without the restriction of Lamb-Dicke limit, the Hamiltonian of the system is similar to a driving Jaynes-Cummings model
A quantum device for measuring two-body interactions, scalar magnetic fields and rotations is proposed using a Bose--Einstein condensate (BEC) in a ring trap. We consider an imbalanced superposition of orbital angular momentum modes with opposite win
We first derive for the general form of the fidelity for various bosonic channels. Thereby we give the fidelity of different quantum bosonic channel, possibly with product input and entangled input respectively, as examples. The properties of the fidelity are carefully examined.