ترغب بنشر مسار تعليمي؟ اضغط هنا

285 - Ran Li , Yu Tian , Hongbao Zhang 2015
It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of cha rged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical method. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington-Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge-Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good test ground to study the nonlinear development of superradiant instability.
77 - Yan Liu , Jianzhou Zhao , Li Yu 2015
High resolution angle-resolved photoemission measurements have been carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we have discovered for the first time the ex istence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deep below the Fermi level at ~1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deep below the Fermi level provides a unique system to explore for new phenomena and properties and opens a door for finding new topological materials in transition metal chalcogenides.
Based on the requirement in the simulation of lepton-nucleus deep inelastic scattering (DIS), we construct a fortran program LDCS 1.0 calculating the differential and total cross sections for the unpolarized charged lepton-unpolarized nucleon and neu trino-unpolarized nucleon neutral current (charged current) DIS at leading order. Any set of the experimentally fitted parton distribution functions could be employed directly. The mass of incident and scattered leptons is taken into account and the boundary conditions calculating the single differential and total cross section are studied. The calculated results well agree with the corresponding experimental data which indicating the LDCS 1.0 program is good. It is also turned out that the effect of tauon mass is not negligible in the GeV energy level.
We investigate the pairing symmetry in heavily overdoped Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ based on the spin-fluctuation mechanism. The exotic octet nodes of the superconducting gap and the unusual evolution of the gap with doping observed by the rec ent experiments are well explained in a unified manner. We demonstrate that the scatterings of electrons on the Fermi patches is mainly responsible for the incommensurate spin fluctuations and consequently the Fermi-surface-dependent multi-gap structure, since the Fermi level is close to the flat band. In addition, we find that a $d$-wave pairing state will prevail over the s-wave pairing state around the Lifshitz transition point.
We present a robust imaging method based on time-correspondence imaging and normalized ghost imaging (GI) that sets two thresholds to select the reference frame exposures for image reconstruction. This double-threshold time-correspondence imaging pro tocol always gives better quality and signal-to-noise ratio than previous GI schemes, and is insensitive to surrounding noise. Moreover, only simple add and minus operations are required while less data storage space and computing time are consumed, thus faster imaging speeds are attainable. The protocol offers a general approach applicable to all GI techniques, and marks a further step forward towards real-time practical applications of correlation imaging.
A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the $s^pm$-pairing symmetry theory predicts the presence of a sha rp neutron spin resonance at an energy below the sum of hole and electron SC gap energies ($Eleq 2Delta$) below $T_c$. On the other hand, the $s^{++}$-pairing symmetry expects a broad spin excitation enhancement at an energy above $2Delta$ below $T_c$. Although the resonance has been observed in iron pnictide superconductors at an energy below $2Delta$ consistent with the $s^pm$-pairing symmetry, the mode has also be interpreted as arising from the $s^{++}$-pairing symmetry with $Ege 2Delta$ due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E=7 meV in SC NaFe$_{0.935}$Co$_{0.045}$As ($T_c = 18$ K). On warming towards $T_c$, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitations spectra within the $s^{pm}$ and $s^{++}$-pairing symmetries, we conclude that the ground-state resonance in NaFe$_{0.935}$Co$_{0.045}$As is only consistent with the $s^{pm}$-pairing, and is inconsistent with the $s^{++}$-pairing symmetry.
Experimental data with digital masks and a theoretical analysis are presented for an imaging scheme that we call time-correspondence differential ghost imaging (TCDGI). It is shown that by conditional averaging of the information from the reference d etector but with the negative signals inverted, the quality of the reconstructed images is in general superior to all other ghost imaging (GI) methods to date. The advantages of both differential GI and time-correspondence GI are combined, plus less data manipulation and shorter computation time are required to obtain equivalent quality images under the same conditions. This TCDGI method offers a general approach applicable to all GI techniques, especially when objects with continuous gray tones are involved.
67 - Scott M. Cohen , Li Yu 2012
We prove that every unitary acting on any multipartite system and having operator Schmidt rank equal to 2 can be diagonalized by local unitaries. This then implies that every such multipartite unitary is locally equivalent to a controlled unitary wit h every party but one controlling a set of unitaries on the last party. We also prove that any bipartite unitary of Schmidt rank 2 is locally equivalent to a controlled unitary where either party can be chosen as the control, and at least one party can control with two terms, which implies that each such unitary can be implemented using local operations and classical communication (LOCC) and a maximally entangled state on two qubits. These results hold regardless of the dimensions of the systems on which the unitary acts.
In certain cases the communication time required to deterministically implement a nonlocal bipartite unitary using prior entanglement and LOCC (local operations and classical communication) can be reduced by a factor of two. We introduce two such fas t protocols and illustrate them with various examples. For some simple unitaries, the entanglement resource is used quite efficiently. The problem of exactly which unitaries can be implemented by these two protocols remains unsolved, though there is some evidence that the set of implementable unitaries may expand at the cost of using more entanglement.
142 - Xiaowen Jia , Yan Liu , Li Yu 2011
High quality single crystals of heavy Fermion CeCoIn5 superconductor have been grown by flux method with a typical size of (1~2)mm x (1~2)mm x ~0.1 mm. The single crystals are characterized by structural analysis from X-ray diffraction and Laue diffr action, as well as compositional analysis. Magnetic and electrical measurements on the single crystals show a sharp superconducting transition with a transition temperature at Tc(onset) ~ 2.3 K and a transition width of ~0.15 K. The resistivity of the CeCoIn5 crystal exhibits a hump at ~45 K which is typical of a heavy Fermion system. High resolution angle-resolved photoemission spectroscopy (ARPES) measurements of CeCoIn5 reveal clear Fermi surface sheets that are consistent with the band structure calculations when assuming itinerant Ce 4f electrons at low temperature. This work provides important information on the electronic structure of heavy Fermion CeCoIn5 superconductor. It also lays a foundation for further studies on the physical properties and superconducting mechanism of the heavy Fermion superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا