ترغب بنشر مسار تعليمي؟ اضغط هنا

Time domain analysis of superradiant instability for the charged stringy black hole-mirror system

339   0   0.0 ( 0 )
 نشر من قبل Ran Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of charged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical method. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington-Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge-Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good test ground to study the nonlinear development of superradiant instability.



قيم البحث

اقرأ أيضاً

212 - Ran Li , Junkun Zhao 2014
We numerically study the superradiant instability of charged massless scalar field in the background of charged stringy black hole with mirror-like boundary condition. We compare the numerical result with the previous analytical result and show the d ependencies of this instability upon various parameters of black hole charge $Q$, scalar field charge $q$, and mirror radius $r_m$. Especially, we have observed that imaginary part of BQN frequencies grows with the scalar field charge $q$ rapidly.
216 - Ran Li , Junkun Zhao 2014
It has been shown that the mass of the scalar field in the charged stringy black hole is never able to generate a potential well outside the event horizon to trap the superradiant modes. This is to say that the charged stringy black hole is stable ag ainst the massive charged scalar perturbation. In this paper we will study the superradiant instability of the massless scalar field in the background of charged stringy black hole due to a mirror-like boundary condition. The analytical expression of the unstable superradiant modes is derived by using the asymptotic matching method. It is also pointed out that the black hole mirror system becomes extremely unstable for a large charge $q$ of scalar field and the small mirror radius $r_m$.
159 - Ran Li , Junkun Zhao , Xinghua Wu 2015
It is reported that massive scalar fields can form bound states around Kerr black holes [C. Herdeiro, and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)]. These bound states are called scalar clouds, which have a real frequency $omega=mOmega_H$, where $m$ is the azimuthal index and $Omega_H$ is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition $omega=qPhi_H$ for the charged scalar field, where $q$ is the charge of scalar field, and $Phi_H$ is the horizon electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for the specific mirror locations $r_m$. It is shown that the analytical results of mirror location $r_m$ for the clouds are perfectly coincide with the numerical results. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. At last, we provide an analytical calculation of the specific mirror locations $r_m$ for the scalar clouds in the $qQgg 1$ regime.
The detection of the least damped quasi-normal mode from the remnant of the gravitational wave event GW150914 realised the long sought possibility to observationally study the properties of quasi-stationary black hole spacetimes through gravitational waves. Past literature has extensively explored this possibility and the emerging field has been named black hole spectroscopy. In this study, we present results regarding the ringdown spectrum of GW150914, obtained by application of Bayesian inference to identify and characterise the ringdown modes. We employ a pure time-domain analysis method which infers from the data the time of transition between the non-linear and quasi-linear regime of the post-merger emission in concert with all other parameters characterising the source. We find that the data provides no evidence for the presence of more than one quasi-normal mode. However, from the central frequency and damping time posteriors alone, no unambiguous identification of a single mode is possible. More in-depth analysis adopting a ringdown model based on results in perturbation theory over the Kerr metric, confirms that the data do not provide enough evidence to discriminate among an $l=2$ and the $l=3$ subset of modes. Our work provides the first comprehensive agnostic framework to observationally investigate astrophysical black holes ringdown spectra.
We study the propagation of charged scalar fields in the background of $2+1$-dimensional Coulomb-like AdS black holes, and we show that such propagation is unstable under Dirichlet boundary conditions. However, all the unstable modes are superradiant and all the stable modes are non-superradiant, according with the superradiant condition. Mainly, we show that when the scalar field is charged the quasinormal frecuencies (QNFs) are always complex, contrary to the uncharged case, where for small values of the black hole charge the complex QNFs are dominant, while that for bigger values of the black hole charge the purely imaginary QNFs are dominant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا