ترغب بنشر مسار تعليمي؟ اضغط هنا

The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice. The honeycomb point sets are constructed by subtracting the root lattice from the weight lattice points of the crystallographic root system $A_ 2$. The two-variable orbit functions of the Weyl group of $A_2$, discretized simultaneously on the weight and root lattices, induce a novel parametric family of extended Weyl orbit functions. The periodicity and von Neumann and Dirichlet boundary properties of the extended Weyl orbit functions are detailed. Three types of discrete complex Fourier-Weyl transforms and real-valued Hartley-Weyl transforms are described. Unitary transform matrices and interpolating behaviour of the discrete transforms are exemplified. Consequences of the developed discrete transforms for transversal eigenvibrations of the mechanical graphene model are discussed.
Four types of discrete transforms of Weyl orbit functions on the finite point sets are developed. The point sets are formed by intersections of the dual-root lattices with the fundamental domains of the affine Weyl groups. The finite sets of weights, labelling the orbit functions, obey symmetries of the dual extended affine Weyl groups. Fundamental domains of the dual extended affine Weyl groups are detailed in full generality. Identical cardinality of the point and weight sets is proved and explicit counting formulas for these cardinalities are derived. Discrete orthogonality of complex-valued Weyl and real-valued Hartley orbit functions over the point sets is established and the corresponding discrete Fourier-Weyl and Hartley-Weyl transforms are formulated.
The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximat ing a weighted integral of any function by a weighted finite sum of function values, in connection with any simple Lie group. The cubature formulas are specialized for simple Lie groups of rank two. An optimal approximation of any function by multivariate polynomials arising from symmetric orbit functions is discussed.
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the result s of Hrivnak and Patera are extended to two additional recently discovered families of special functions, called $S^s-$ and $S^l-$functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments $F^s_M$ and $F^l_M$ of a lattice in any dimension $ngeq2$ and of any density controlled by $M$, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots.
Lie groups with two different root lengths allow two mixed sign homomorphisms on their corresponding Weyl groups, which in turn give rise to two families of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas leading t o the Gaussian cubature formulas for families of polynomials arising from the characters of irreducible representations of any simple Lie group, to new cubature formulas based on the corresponding hybrid characters. These formulas are new forms of Gaussian cubature in the short root length case and new forms of Radau cubature in the long root case. The nodes for the cubature arise quite naturally from the (computationally efficient) elements of finite order of the Lie group.
Four families of generalizations of trigonometric functions were recently introduced. In the paper the functions are transformed into four families of orthogonal polynomials depending on two variables. Recurrence relations for construction of the pol ynomials are presented. Orthogonality relations of the four families of polynomials are found together with the appropriate weight fuctions. Tables of the lowest degree polynomials are shown. Numerous trigonometric-like identities are found. Two of the four families of functions are identified as the functions encountered in the Weyl character formula for the finite dimensional irreducible representations of the compact Lie group Sp(4). The other two families of functions seem to play no role in Lie theory so far in spite of their analogous `good properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا