ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose and experimentally measure an entropy that quantifies the volume of correlations among qubits. The experiment is carried out on a nearly isolated quantum system composed of a central spin coupled and initially uncorrelated with 15 other sp ins. Due to the spin-spin interactions, information flows from the central spin to the surrounding ones forming clusters of multi-spin correlations that grow in time. We design a nuclear magnetic resonance experiment that directly measures the amplitudes of the multi-spin correlations and use them to compute the evolution of what we call correlation Renyi entropy. This entropy keeps growing even after the equilibration of the entanglement entropy. We also analyze how the saturation point and the timescale for the equilibration of the correlation Renyi entropy depend on the system size.
Topological phases supported by quasi-periodic spin-chain models and their bulk-boundary principles are investigated by numerical and K-theoretic methods. We show that, for both the un-correlated and correlated phases, the operator algebras that gene rate the Hamiltonians are non-commutative tori, hence the quasi-periodic chains display physics akin to the quantum Hall effect in two and higher dimensions. The robust topological edge modes are found to be strongly shaped by the interaction and, generically, they have hybrid edge-localized and chain-delocalized structures. Our findings lay the foundations for topological spin pumping using the phason of a quasi-periodic pattern as an adiabatic parameter, where selectively chosen quantized bits of magnetization can be transferred from one edge of the chain to the other.
Recent works have shown that the spectroscopic access to highly-excited states provides enough information to characterize transition states in isomerization reactions. Here, we show that the transition state of the bond breaking HCN-HNC isomerizatio n reaction can also be achieved with the two-dimensional limit of the algebraic vibron model. We describe the systems bending vibration with the algebraic Hamiltonian and use its classical limit to characterize the transition state. Using either the coherent state formalism or a recently proposed approach by Baraban et al. [ Science 2015 , 350 , 1338], we obtain an accurate description of the isomerization transition state. In addition, we show that the energy level dynamics and the transition state wave function structure indicate that the spectrum in the vicinity of the isomerization saddle point can be understood in terms of the formalism for excited state quantum phase transitions.
In a recent Letter [PhysRevLett.119.030601 (2017), arXiv:1702.08227], Shiraishi and Mori claim to provide a general method for constructing local Hamiltonians that do not exhibit eigenstate thermalization. We argue that the claim is based on a misund erstanding of the eigenstate thermalization hypothesis (ETH). More specifically, on the assumption that ETH is valid for the entire Hamiltonian matrix instead of each symmetry sector independently. We discuss what happens if one mixes symmetry sectors in the two-dimensional transverse field Ising model.
A main distinguishing feature of non-Hermitian quantum mechanics is the presence of exceptional points (EPs). They correspond to the coalescence of two energy levels and their respective eigenvectors. Here, we use the Lipkin-Meshkov-Glick (LMG) model as a testbed to explore the strong connection between EPs and the onset of excited state quantum phase transitions (ESQPTs). We show that for finite systems, the exact degeneracies (EPs) obtained with the non-Hermitian LMG Hamiltonian continued into the complex plane are directly linked with the avoided crossings that characterize the ESQPTs for the real (physical) LMG Hamiltonian. The values of the complex control parameter $alpha$ that lead to the EPs approach the real axis as the system size $Nrightarrow infty$. This happens for both, the EPs that are close to the separatrix that marks the ESQPT and also for those that are far away, although in the latter case, the rate the imaginary part of $alpha$ reduces to zero as $N$ increases is smaller. With the method of Pade approximants, we can extract the critical value of $alpha$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا