ﻻ يوجد ملخص باللغة العربية
We propose and experimentally measure an entropy that quantifies the volume of correlations among qubits. The experiment is carried out on a nearly isolated quantum system composed of a central spin coupled and initially uncorrelated with 15 other spins. Due to the spin-spin interactions, information flows from the central spin to the surrounding ones forming clusters of multi-spin correlations that grow in time. We design a nuclear magnetic resonance experiment that directly measures the amplitudes of the multi-spin correlations and use them to compute the evolution of what we call correlation Renyi entropy. This entropy keeps growing even after the equilibration of the entanglement entropy. We also analyze how the saturation point and the timescale for the equilibration of the correlation Renyi entropy depend on the system size.
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alp
Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nea
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems. This quantum correlation entropy $
We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperatu
We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula