ﻻ يوجد ملخص باللغة العربية
In a recent Letter [PhysRevLett.119.030601 (2017), arXiv:1702.08227], Shiraishi and Mori claim to provide a general method for constructing local Hamiltonians that do not exhibit eigenstate thermalization. We argue that the claim is based on a misunderstanding of the eigenstate thermalization hypothesis (ETH). More specifically, on the assumption that ETH is valid for the entire Hamiltonian matrix instead of each symmetry sector independently. We discuss what happens if one mixes symmetry sectors in the two-dimensional transverse field Ising model.
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of
A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal propert
Under unitary time evolution, expectation values of physically reasonable observables often evolve towards the predictions of equilibrium statistical mechanics. The eigenstate thermalization hypothesis (ETH) states that this is also true already for
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a
Using numerical exact diagonalization, we study matrix elements of a local spin operator in the eigenbasis of two different nonintegrable quantum spin chains. Our emphasis is on the question to what extent local operators can be represented as random