ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the Schrodinger operator $-Delta_g+q$ on a conformally transversally anisotropic manifold of dimension $geq 3$, provided t hat the geodesic ray transform on the transversal manifold is constructively invertible. This is a constructive counterpart of the uniqueness result of Dos Santos Ferreira-Kurylev-Lassas-Salo. A crucial role in our reconstruction procedure is played by a constructive determination of the boundary traces of suitable complex geometric optics solutions based on Gaussian beams quasimodes concentrated along non-tangential geodesics on the transversal manifold, which enjoy uniqueness properties. This is achieved by applying the simplified version of the approach of Nachman-Street to our setting. We also identify the main space introduced by Nachman-Street with a standard Sobolev space on the boundary of the manifold. Another ingredient in the proof of our result is a reconstruction formula for the boundary trace of a continuous potential from the knowledge of the Dirichlet-to-Neumann map.
We introduce a method of solving inverse boundary value problems for wave equations on Lorentzian manifolds, and show that zeroth order coefficients can be recovered under certain curvature bounds. The set of Lorentzian metrics satisfying the curvatu re bounds has a non-empty interior in the sense of arbitrary, smooth perturbations of the metric, whereas all previous results on this problem impose conditions on the metric that force it to be real analytic with respect to a suitably defined time variable. The analogous problem on Riemannian manifolds is called the Calderon problem, and in this case the known results require the metric to be independent of one of the variables. Our approach is based on a new unique continuation result in the exterior of the double null cone emanating from a point. The approach shares features with the classical Boundary Control method, and can be viewed as a generalization of this method to cases where no real analyticity is assumed.
The paper studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations. We introduce a method to solve inverse problems for non-linear equations using interaction of three waves, that makes it po ssible to study the inverse problem in all dimensions $n+1geq 3$. We consider the case when the set $Omega_{textrm{in}}$, where the sources are supported, and the set $Omega_{textrm{out}}$, where the observations are made, are separated. As model problems we study both a quasi-linear and also a semi-linear wave equation and show in each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of coordinates. The proof consists of two independent components. In the first half we study multiple-fold linearization of the non-linear wave equation near real parts of Gaussian beams that results in a three-wave interaction. We show that the three-wave interaction can produce a three-to-one scattering data. In the second half of the paper, we study an abstract formulation of the three-to-one scattering relation showing that it recovers the topological, differential and conformal structures of the manifold in a causal diamond set that is the intersection of the future of the point $p_{in}in Omega_{textrm{in}}$ and the past of the point $p_{out}in Omega_{textrm{out}}$. The results do not require any assumptions on the conjugate or cut points.
We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lo wer order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.
We study the weighted light ray transform $L$ of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze $L$ as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike sing ularities of a function $f$ from its the weighted light ray transform $Lf$ by a suitable filtered back-projection.
In this paper, we study the inverse boundary value problem for the wave equation with a view towards an explicit reconstruction procedure. We consider both the anisotropic problem where the unknown is a general Riemannian metric smoothly varying in a domain, and the isotropic problem where the metric is conformal to the Euclidean metric. Our objective in both cases is to construct the metric, using either the Neumann-to-Dirichlet (N-to-D) map or Dirichlet-to-Neumann (D-to-N) map as the data. In the anisotropic case we construct the metric in the boundary normal (or semi-geodesic) coordinates via reconstruction of the wave field in the interior of the domain. In the isotropic case we can go further and construct the wave speed in the Euclidean coordinates via reconstruction of the coordinate transformation from the boundary normal coordinates to the Euclidean coordinates. Both cases utilize a variant of the Boundary Control method, and work by probing the interior using special boundary sources. We provide a computational experiment to demonstrate our procedure in the isotropic case with N-to-D data.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivat ive of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا