ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we give a recursive formula for the conjugacy growth series of a graph product in terms of the conjugacy growth and standard growth series of subgraph products. We also show that the conjugacy and standard growth rates in a graph produc t are equal provided that this property holds for each vertex group. All results are obtained for the standard generating set consisting of the union of generating sets of the vertex groups.
We give an algorithm which computes the fixed subgroup and the stable image for any endomorphism of the free group of rank two $F_2$, answering for $F_2$ a question posed by Stallings in 1984 and a question of Ventura.
A marked free monoid morphism is a morphism for which the image of each generator starts with a different letter, and immersions are the analogous maps in free groups. We show that the (simultaneous) PCP is decidable for immersions of free groups, an d provide an algorithm to compute bases for the sets, called equalisers, on which the immersions take the same values. We also answer a question of Stallings about the rank of the equaliser. Analogous results are proven for marked morphisms of free monoids.
We show that the full set of solutions to systems of equations and inequations in a hyperbolic group, as shortlex geodesic words (or any regular set of quasigeodesic normal forms), is an EDT0L language whose specification can be computed in NSPACE$(n ^2log n)$ for the torsion-free case and NSPACE$(n^4log n)$ in the torsion case. Furthermore, in the presence of quasi-isometrically embeddable rational constraints, we show that the full set of solutions to systems of equations in a hyperbolic group remains EDT0L. Our work combines the geometric results of Rips, Sela, Dahmani and Guirardel on the decidability of the existential theory of hyperbolic groups with the work of computer scientists including Plandowski, Je.z, Diekert and others on PSPACE algorithms to solve equations in free monoids and groups using compression, and involves an intricate language-theoretic analysis.
82 - Laura Ciobanu , Alex Evetts , 2019
In this paper we give asymptotics for the conjugacy growth of the soluble Baumslag-Solitar groups $BS(1,k)$, $kgeq 2$, with respect to the standard generating set, by providing a complete description of geodesic conjugacy representatives. We show tha t the conjugacy growth series for these groups are transcendental, and give formulas for the series. As a result of our computation we also establish that in each $BS(1,k)$ the conjugacy and standard growth rates are equal.
We show that the full set of solutions to systems of equations and inequations in a hyperbolic group, with or without torsion, as shortlex geodesic words, is an EDT0L language whose specification can be computed in $mathsf{NSPACE}(n^2log n)$ for the torsion-free case and $mathsf{NSPACE}(n^4log n)$ in the torsion case. Our work combines deep geometric results by Rips, Sela, Dahmani and Guirardel on decidability of existential theories of hyperbolic groups, work of computer scientists including Plandowski, Je.z, Diekert and others on $mathsf{PSPACE}$ algorithms to solve equations in free monoids and groups using compression, and an intricate language-theoretic analysis. The present work gives an essentially optimal formal language description for all solutions in all hyperbolic groups, and an explicit and surprising low space complexity to compute them.
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is $0$ for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups, and the lamplighter group.
We consider the cyclic closure of a language, and its generalisation to the operators $C^k$ introduced by Brandstadt. We prove that the cyclic closure of an indexed language is indexed, and that if $L$ is a context-free language then $C^k(L)$ is indexed.
Let $F$ be a free group of finite rank. We say that the monomorphism problem in $F$ is decidable if for any two elements $u$ and $v$ in $F$, there is an algorithm that determines whether there exists a monomorphism of $F$ that sends $u$ to $v$. In th is paper we show that the monomorphism problem is decidable and we provide an effective algorithm that solves the problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا