ﻻ يوجد ملخص باللغة العربية
In this paper we give asymptotics for the conjugacy growth of the soluble Baumslag-Solitar groups $BS(1,k)$, $kgeq 2$, with respect to the standard generating set, by providing a complete description of geodesic conjugacy representatives. We show that the conjugacy growth series for these groups are transcendental, and give formulas for the series. As a result of our computation we also establish that in each $BS(1,k)$ the conjugacy and standard growth rates are equal.
A generalized Baumslag-Solitar group is the fundamental group of a graph of groups all of whose vertex and edge groups are infinite cyclic. Levitt proves that any generalized Baumslag-Solitar group has property R-infinity, that is, any automorphism h
In this paper we classify Baumslag-Solitar groups up to commensurability. In order to prove our main result we give a solution to the isomorphism problem for a subclass of Generalised Baumslag-Solitar groups.
We study convergent sequences of Baumslag-Solitar groups in the space of marked groups. We prove that BS(m,n) --> F_2 for |m|,|n| --> infty and BS(1,n) --> Z wr Z for |n| --> infty. For m fixed, |m|>1, we show that the sequence (BS(m,n))_n is not con
We say that a group has property $R_{infty}$ if any group automorphism has an infinite number of twisted conjugacy classes. Felshtyn and Goncalves prove that the solvable Baumslag-Solitar groups BS(1,m) have property $R_{infty}$. We define a solvable
We exhibit a regular language of geodesics for a large set of elements of $BS(1,n)$ and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of $BS(1,n)$, which was