ترغب بنشر مسار تعليمي؟ اضغط هنا

At low temperatures, indirect excitons formed at the in-plane electron-hole interface in a coupled quantum well structure undergo a spontaneous transition into a spatially modulated state. We report on the control of the instability wavelength, measu rement of the dynamics of the exciton emission pattern, and observation of the fluctuation and commensurability effect of the exciton density wave. We found that fluctuations are strongly suppressed when the instability wavelength is commensurate with defect separation along the exciton density wave. The commensurability effect is also found in numerical simulations within the model describing the exciton density wave in terms of an instability due to stimulated processes.
We report on the kinetics of the inner ring in the exciton emission pattern. The formation time of the inner ring following the onset of the laser excitation is found to be about 30 ns. The inner ring was also found to disappear within 4 ns after the laser termination. The latter process is accompanied by a jump in the photoluminescence (PL) intensity. The spatial dependence of the PL-jump indicates that the excitons outside of the region of laser excitation, including the inner ring region, are efficiently cooled to the lattice temperature even during the laser excitation. The ring formation and disappearance are explained in terms of exciton transport and cooling.
We report on the kinetics of a low-temperature gas of indirect excitons in the optically-induced exciton trap. The excitons in the region of laser excitation are found to rapidly -- within 4 ns -- cool to the lattice temperature T = 1.4 K, while the excitons at the trap center are found to be cold -- essentially at the lattice temperature -- even during the excitation pulse. The loading time of excitons to the trap center is found to be about 40 ns, longer than the cooling time yet shorter than the lifetime of the indirect excitons. The observed time hierarchy is favorable for creating a dense and cold exciton gas in optically-induced traps and for in situ control of the gas by varying the excitation profile in space and time before the excitons recombine.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا