ﻻ يوجد ملخص باللغة العربية
At low temperatures, indirect excitons formed at the in-plane electron-hole interface in a coupled quantum well structure undergo a spontaneous transition into a spatially modulated state. We report on the control of the instability wavelength, measurement of the dynamics of the exciton emission pattern, and observation of the fluctuation and commensurability effect of the exciton density wave. We found that fluctuations are strongly suppressed when the instability wavelength is commensurate with defect separation along the exciton density wave. The commensurability effect is also found in numerical simulations within the model describing the exciton density wave in terms of an instability due to stimulated processes.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e
Optical pump-THz probe spectroscopy is used to investigate the exciton formation dynamics and its intensity dependence in bulk Ge. Associated with the intra-excitonic 1s-2p transition, the gradual build-up of an absorption peak around 3.1 meV (0.75 T
Two-dimensional stacking fault defects embedded in a bulk crystal can provide a homogeneous trapping potential for carriers and excitons. Here we utilize state-of-the-art structural imaging coupled with density functional and effective-mass theory to
With exciton lifetime much extended in semiconductor quantum-well structures, their transport and Bose-Einstein condensation become a focus of research in recent years. We reveal a momentum-space gauge field in the exciton center-of-mass dynamics due
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and tim