ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation and Commensurability Effect of Exciton Density Wave

245   0   0.0 ( 0 )
 نشر من قبل Sen Yang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At low temperatures, indirect excitons formed at the in-plane electron-hole interface in a coupled quantum well structure undergo a spontaneous transition into a spatially modulated state. We report on the control of the instability wavelength, measurement of the dynamics of the exciton emission pattern, and observation of the fluctuation and commensurability effect of the exciton density wave. We found that fluctuations are strongly suppressed when the instability wavelength is commensurate with defect separation along the exciton density wave. The commensurability effect is also found in numerical simulations within the model describing the exciton density wave in terms of an instability due to stimulated processes.



قيم البحث

اقرأ أيضاً

We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e xcitons and photons is lost. We discuss an alternative high-density scenario, where the strong coupling is maintained. We find that the photoluminescence smoothly transitions between the lower polariton energy to the cavity photon energy. An intuitive understanding of the change in spectral characteristics is given, as well as differences to the photoluminescence characteristics of the lasing case.
Optical pump-THz probe spectroscopy is used to investigate the exciton formation dynamics and its intensity dependence in bulk Ge. Associated with the intra-excitonic 1s-2p transition, the gradual build-up of an absorption peak around 3.1 meV (0.75 T Hz) signifies the delayed exciton formation after optical pump which is accelerated for higher excitation densities. Analyzing the spectral shape of this THz absorption resonance, two distinct resonances are found which are attributed to the mass-anisotropy of L valley electrons via a microscopic theory.
Two-dimensional stacking fault defects embedded in a bulk crystal can provide a homogeneous trapping potential for carriers and excitons. Here we utilize state-of-the-art structural imaging coupled with density functional and effective-mass theory to build a microscopic model of the stacking-fault exciton. The diamagnetic shift and exciton dipole moment at different magnetic fields are calculated and compared with the experimental photoluminescence of excitons bound to a single stacking fault in GaAs. The model is used to further provide insight into the properties of excitons bound to the double-well potential formed by stacking fault pairs. This microscopic exciton model can be used as an input into models which include exciton-exciton interactions to determine the excitonic phases accessible in this system.
509 - Wang Yao , Qian Niu 2008
With exciton lifetime much extended in semiconductor quantum-well structures, their transport and Bose-Einstein condensation become a focus of research in recent years. We reveal a momentum-space gauge field in the exciton center-of-mass dynamics due to Berry phase effects. We predict spin-dependent topological transport of the excitons analogous to the anomalous Hall and Nernst effects for electrons. We also predict spin-dependent circulation of a trapped exciton gas and instability in an exciton condensate in favor of vortex formation.
We present a detailed investigation of the exciton and trion dynamics in naturally doped MoSe2 and WSe2 single atomic layers as a function of temperature in the range 10-300K under above band-gap laser excitation. By combining time-integrated and tim e-resolved photoluminescence (PL) spectroscopy we show the importance of exciton and trion localization in both materials at low temperatures. We also reveal the transition to delocalized exciton complexes at higher temperatures where the exciton and trion thermal energy exceeds the typical localization energy. This is accompanied with strong changes in PL including suppression of the trion PL and decrease of the trion PL life-time, as well as significant changes for neutral excitons in the temperature dependence of the PL intensity and appearance of a pronounced slow PL decay component. In MoSe2 and WSe2 studied here, the temperatures where such strong changes occur are observed at around 100 and 200 K, respectively, in agreement with their inhomogeneous PL linewidth of 8 and 20 meV at T~10K. The observed behavior is a result of a complex interplay between influences of the specific energy ordering of bright and dark excitons in MoSe2 and WSe2, sample doping, trion and exciton localization and various temperature-dependent non-radiative processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا