ترغب بنشر مسار تعليمي؟ اضغط هنا

85 - M.T. Bell , W. Zhang , L.B. Ioffe 2015
We have observed the effect of the Aharonov-Casher (AC) interference on the spectrum of a superconducting system containing a symmetric Cooper pair box (CPB) and a large inductance. By varying the charge $n_{g}$ induced on the CPB island, we observed oscillations of the device spectrum with the period $Delta n_{g}=2e$. These oscillations are attributed to the charge-controlled AC interference between the fluxon tunneling processes in the CPB Josephson junctions. Total suppression of the tunneling (complete destructive interference) has been observed for the charge $n_{g}=e(2n+1)$. The CPB in this regime represents the $4pi$-periodic Josephson element, which can be used for the development of the parity-protected superconducting qubits.
107 - L.B. Ioffe , B.Z. Spivak 2013
We predict the universal power law dependence of localization length on magnetic field in the strongly localized regime. This effect is due to the orbital quantum interference. Physically, this dependence shows up in an anomalously large negative mag netoresistance in the hopping regime. The reason for the universality is that the problem of the electron tunneling in a random media belongs to the same universality class as directed polymer problem even in the case of wave functions of random sign. We present numerical simulations which prove this conjecture. We discuss the existing experiments that show anomalously large magnetoresistance. We also discuss the role of localized spins in real materials and the spin polarizing effect of magnetic field.
We have studied the magnetic-field-driven quantum phase transitions in Josephson junction arrays with a large coordination number. The characteristic energies were extracted in both the superconducting and insulating phases by integrating the current -voltage characteristics over a voltage range 2eVleqk_B T. For the arrays with a relatively strong Josephson coupling, we observed duality between the energies in the superconducting and insulating phases. The arrays with a weaker Josephson coupling demonstrate an intermediate, bad metal regime in weak magnetic fields; this observation underlines the importance of vortex pinning at large scales and, presumably, emergent inhomogeneity in the presence of strong offset charge disorder.
We propose a Josephson junction array which can be tuned into an unconventional insulating state by varying external magnetic field. This insulating state retains a gap to half vortices; as a consequence, such array with non-trivial global geometry e xhibits a ground state degeneracy. This degeneracy is protected from the effects of external noise. We compute the gaps separating higher energy states from the degenerate ground state and we discuss experiments probing the unusual properties of this insulator.
We introduce a new class of Josephson arrays which have non-trivial topology and exhibit a novel state at low temperatures. This state is characterized by long range order in a two Cooper pair condensate and by a discrete topological order parameter. These arrays have degenerate ground states with this degeneracy protected from the external perturbations (and noise) by the topological order parameter. We show that in ideal conditions the low order effect of the external perturbations on this degeneracy is exactly zero and that deviations from ideality lead to only exponentially small effects of perturbations. We argue that this system provides a physical implementation of an ideal quantum computer with a built in error correction and show that even a small array exhibits interesting physical properties such as superconductivity with double charge, 4e, and extremely long decoherence times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا