ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Evidence of the Aharonov-Casher effect in a Cooper Pair Box

166   0   0.0 ( 0 )
 نشر من قبل Michael Gershenson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed the effect of the Aharonov-Casher (AC) interference on the spectrum of a superconducting system containing a symmetric Cooper pair box (CPB) and a large inductance. By varying the charge $n_{g}$ induced on the CPB island, we observed oscillations of the device spectrum with the period $Delta n_{g}=2e$. These oscillations are attributed to the charge-controlled AC interference between the fluxon tunneling processes in the CPB Josephson junctions. Total suppression of the tunneling (complete destructive interference) has been observed for the charge $n_{g}=e(2n+1)$. The CPB in this regime represents the $4pi$-periodic Josephson element, which can be used for the development of the parity-protected superconducting qubits.



قيم البحث

اقرأ أيضاً

We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf-SQUID with the Josephson junction replaced by a Bloch transistor -- two junctions separated by a small super conducting island on which the charge can be induced by an external gate voltage. When the Josephson coupling energies of the junctions are equal and the induced charge is q=e, destructive interference between tunneling paths brings the flux tunneling rate to zero. The device may also be useful as a qubit for quantum computation.
A small superconducting electrode (a single-Cooper-pair box) connected to a reservoir via a Josephson junction constitutes an artificial two-level system, in which two charge states that differ by 2e are coupled by tunneling of Cooper pairs. Despite its macroscopic nature involving a large number of electrons, the two-level system shows coherent superposition of the two charge states, and has been suggested as a candidate for a qubit, i.e. a basic component of a quantum computer. Here we report on time-domain observation of the coherent quantum-state evolution in the two-level system by applying a short voltage pulse that modifies the energies of the two levels nonadiabatically to control the coherent evolution. The resulting state was probed by a tunneling current through an additional probe junction. Our results demonstrate coherent operation and measurement of a quantum state of a single two-level system, i.e. a qubit, in a solid-state electronic device.
126 - Elinor K. Irish , K. Schwab 2003
We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Foc k state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box.
We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor an d the normal metal/graphene/normal metal junctions. In this case, the electronic transport through one junction can be tuned by an applied bias along the other. We observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by using a modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam splitter model.
Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this problem, we here propose and analyze a dynamic Cooper pair splitter that produces a noiseless and regular flow of spin-entangled electrons. The Cooper pair splitter is based on a superconductor coupled to quantum dots, whose energy levels are tuned in and out of resonance to control the splitting process. We identify the optimal operating conditions for which exactly one Cooper pair is split per period of the external drive and the flow of entangled electrons becomes noiseless. To characterize the regularity of the Cooper pair splitter in the time domain, we analyze the $g^{(2)}$-function of the output currents and the distribution of waiting times between split Cooper pairs. Our proposal is feasible using current technology, and it paves the way for dynamic quantum information processing with spin-entangled electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا